Possibilistic Uncertainty Quantification in One-Dimensional Consolidation Problems

D. Boumezerane
{"title":"Possibilistic Uncertainty Quantification in One-Dimensional Consolidation Problems","authors":"D. Boumezerane","doi":"10.1115/1.4050164","DOIUrl":null,"url":null,"abstract":"In this study, we use possibility distribution as a basis for parameter uncertainty quantification in 1-D consolidation problems. A Possibility distribution is the onepoint coverage function of a random set and viewed as containing both partial ignorance and uncertainty. Vagueness and scarcity of information needed for characterizing the coefficient of consolidation in clay can be handled using possibility distributions. Possibility distributions can be constructed from existing data, or based on transformation of probability distributions. An attempt is made to set a systematic approach for estimating uncertainty propagation during the consolidation process. The measure of uncertainty is based on Klir’s definition (1995). We make comparisons with results obtained from other approaches (probabilistic...) and discuss the importance of using possibility distributions in this type of problems.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"77 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4050164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we use possibility distribution as a basis for parameter uncertainty quantification in 1-D consolidation problems. A Possibility distribution is the onepoint coverage function of a random set and viewed as containing both partial ignorance and uncertainty. Vagueness and scarcity of information needed for characterizing the coefficient of consolidation in clay can be handled using possibility distributions. Possibility distributions can be constructed from existing data, or based on transformation of probability distributions. An attempt is made to set a systematic approach for estimating uncertainty propagation during the consolidation process. The measure of uncertainty is based on Klir’s definition (1995). We make comparisons with results obtained from other approaches (probabilistic...) and discuss the importance of using possibility distributions in this type of problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维固结问题的可能性不确定性量化
在本研究中,我们使用可能性分布作为一维固结问题参数不确定性量化的基础。可能性分布是一个随机集合的一点覆盖函数,它包含了部分无知和不确定性。表征粘土固结系数所需的信息的模糊性和稀缺性可以用可能性分布来处理。可能性分布可以从现有数据中构造,也可以基于概率分布的变换。试图建立一种系统的方法来估计固结过程中的不确定性传播。不确定度的度量基于Klir的定义(1995)。我们与其他方法(概率…)得到的结果进行了比较,并讨论了在这类问题中使用可能性分布的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1