{"title":"Generation and Evaluation of CPT Data Using Kriging Interpolation Technique","authors":"A. Chala, R. Ray","doi":"10.3311/ppci.21865","DOIUrl":null,"url":null,"abstract":"The cone penetration test (CPT) has been the de facto field exploration method in geotechnical engineering for decades. Variations of CPT can measure parameters for seismic, environmental, and hydrological applications. Analyzing response often requires properties in areas that have little or no data. Therefore, given the limited CPT data, it is critical to understand how to accurately estimate the soil properties at unsampled locations. In this paper, we generated soil shear wave velocity profiles using the kriging interpolation technique and assessed their performance using site response analysis. Four kriging interpolation-based shear wave velocity profiles and four additional CPT-based shear wave velocity profiles defined site conditions for response analysis. We performed a series of 1-D equivalent linear site response analyses using STRATA software. The site response analysis results are presented as amplification factors (AF), peak ground acceleration (PGA) profiles, surface spectral acceleration, and surface acceleration time histories. Compared to CPT-based profiles, the results of kriging interpolation-based profiles were evaluated and discussed. The results confirmed the reliability of the kriging interpolation technique in predicting soil parameters at unsampled locations.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21865","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
The cone penetration test (CPT) has been the de facto field exploration method in geotechnical engineering for decades. Variations of CPT can measure parameters for seismic, environmental, and hydrological applications. Analyzing response often requires properties in areas that have little or no data. Therefore, given the limited CPT data, it is critical to understand how to accurately estimate the soil properties at unsampled locations. In this paper, we generated soil shear wave velocity profiles using the kriging interpolation technique and assessed their performance using site response analysis. Four kriging interpolation-based shear wave velocity profiles and four additional CPT-based shear wave velocity profiles defined site conditions for response analysis. We performed a series of 1-D equivalent linear site response analyses using STRATA software. The site response analysis results are presented as amplification factors (AF), peak ground acceleration (PGA) profiles, surface spectral acceleration, and surface acceleration time histories. Compared to CPT-based profiles, the results of kriging interpolation-based profiles were evaluated and discussed. The results confirmed the reliability of the kriging interpolation technique in predicting soil parameters at unsampled locations.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.