A Mathematical Framework for Enriching Human-Machine Interactions

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-06-06 DOI:10.3390/make5020034
A. Ehresmann, Mathias Béjean, J. Vanbremeersch
{"title":"A Mathematical Framework for Enriching Human-Machine Interactions","authors":"A. Ehresmann, Mathias Béjean, J. Vanbremeersch","doi":"10.3390/make5020034","DOIUrl":null,"url":null,"abstract":"This paper presents a conceptual mathematical framework for developing rich human–machine interactions in order to improve decision-making in a social organisation, S. The idea is to model how S can create a “multi-level artificial cognitive system”, called a data analyser (DA), to collaborate with humans in collecting and learning how to analyse data, to anticipate situations, and to develop new responses, thus improving decision-making. In this model, the DA is “processed” to not only gather data and extend existing knowledge, but also to learn how to act autonomously with its own specific procedures or even to create new ones. An application is given in cases where such rich human–machine interactions are expected to allow the DA+S partnership to acquire deep anticipation capabilities for possible future changes, e.g., to prevent risks or seize opportunities. The way the social organization S operates over time, including the construction of DA, is described using the conceptual framework comprising “memory evolutive systems” (MES), a mathematical theoretical approach introduced by Ehresmann and Vanbremeersch for evolutionary multi-scale, multi-agent and multi-temporality systems. This leads to the definition of a “data analyser–MES”.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"613 1","pages":"597-610"},"PeriodicalIF":4.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a conceptual mathematical framework for developing rich human–machine interactions in order to improve decision-making in a social organisation, S. The idea is to model how S can create a “multi-level artificial cognitive system”, called a data analyser (DA), to collaborate with humans in collecting and learning how to analyse data, to anticipate situations, and to develop new responses, thus improving decision-making. In this model, the DA is “processed” to not only gather data and extend existing knowledge, but also to learn how to act autonomously with its own specific procedures or even to create new ones. An application is given in cases where such rich human–machine interactions are expected to allow the DA+S partnership to acquire deep anticipation capabilities for possible future changes, e.g., to prevent risks or seize opportunities. The way the social organization S operates over time, including the construction of DA, is described using the conceptual framework comprising “memory evolutive systems” (MES), a mathematical theoretical approach introduced by Ehresmann and Vanbremeersch for evolutionary multi-scale, multi-agent and multi-temporality systems. This leads to the definition of a “data analyser–MES”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丰富人机交互的数学框架
本文提出了一个概念性数学框架,用于开发丰富的人机交互,以改善社会组织S的决策。其想法是模拟S如何创建一个“多层次人工认知系统”,称为数据分析器(DA),与人类合作收集和学习如何分析数据,预测情况,并制定新的响应,从而改善决策。在这个模型中,数据处理不仅要收集数据和扩展现有知识,还要学习如何根据自己的特定程序自主行动,甚至创建新的程序。在这种丰富的人机交互期望允许DA+S伙伴关系获得对未来可能变化的深度预测能力的情况下,例如,预防风险或抓住机会。社会组织S随时间的运行方式,包括数据分析的构建,使用包含“记忆进化系统”(MES)的概念框架来描述,MES是Ehresmann和Vanbremeersch为进化的多尺度、多主体和多时间系统引入的数学理论方法。这就引出了“数据分析师- mes”的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1