Human Dental Age and Gender Assessment from Dental Radiographs Using Deep Convolutional Neural Network

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-07-15 DOI:10.5755/j01.itc.52.2.32796
B. Hemalatha, P. Bhuvaneswari, Mahesh Nataraj, G. Shanmugavadivel
{"title":"Human Dental Age and Gender Assessment from Dental Radiographs Using Deep Convolutional Neural Network","authors":"B. Hemalatha, P. Bhuvaneswari, Mahesh Nataraj, G. Shanmugavadivel","doi":"10.5755/j01.itc.52.2.32796","DOIUrl":null,"url":null,"abstract":"Human gender and age identification play a prominent role in forensics, bio-archaeology, and anthropology. Dental images provide prominent indications used for the treatment or diagnosis of disease and forensic investigation. Numerous dental age identification techniques come with specific boundaries, namely minimum reliability and accuracy. Gender identification approaches are not widely researched, whereas the effectiveness and accuracy of classification are not practical and very minimal. Drawbacks in the existing system are considered in the formulation of the proposed approach. Deep learning approaches can effectively rectify issues of drawbacks in other classifiers. The accuracy and performance of a classifier are enhanced with the deep convolutional neural network. The fuzzy C-Means Clustering approach is used for segmentation, and Ant Lion Optimization is used for optimal feature score selection. The selected features are classified using a deep convolutional neural network (DCNN). The performance of the proposed technique is investigated with existing classifiers, and DCNN outperforms other classifiers. The proposed technique achieves 91.7% and 91% accuracy for the identification of gender and age, respectively.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"271 1","pages":"322-335"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32796","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Human gender and age identification play a prominent role in forensics, bio-archaeology, and anthropology. Dental images provide prominent indications used for the treatment or diagnosis of disease and forensic investigation. Numerous dental age identification techniques come with specific boundaries, namely minimum reliability and accuracy. Gender identification approaches are not widely researched, whereas the effectiveness and accuracy of classification are not practical and very minimal. Drawbacks in the existing system are considered in the formulation of the proposed approach. Deep learning approaches can effectively rectify issues of drawbacks in other classifiers. The accuracy and performance of a classifier are enhanced with the deep convolutional neural network. The fuzzy C-Means Clustering approach is used for segmentation, and Ant Lion Optimization is used for optimal feature score selection. The selected features are classified using a deep convolutional neural network (DCNN). The performance of the proposed technique is investigated with existing classifiers, and DCNN outperforms other classifiers. The proposed technique achieves 91.7% and 91% accuracy for the identification of gender and age, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的牙齿x光片人类牙齿年龄和性别评估
人类性别和年龄鉴定在法医学、生物考古学和人类学中发挥着重要作用。牙齿图像为疾病的治疗或诊断和法医调查提供了突出的指示。许多牙齿年龄鉴定技术都有特定的界限,即最低的可靠性和准确性。性别识别方法的研究并不广泛,而分类的有效性和准确性不实用且非常低。在制订建议的办法时,考虑到现有制度的缺点。深度学习方法可以有效地纠正其他分类器的缺点。使用深度卷积神经网络可以提高分类器的精度和性能。采用模糊c均值聚类方法进行分割,采用蚂蚁狮子优化方法进行最优特征评分选择。选择的特征使用深度卷积神经网络(DCNN)进行分类。用现有的分类器对该技术的性能进行了研究,结果表明DCNN优于其他分类器。该方法对性别和年龄的识别准确率分别达到91.7%和91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1