InGAN: Capturing and Retargeting the “DNA” of a Natural Image

Assaf Shocher, Shai Bagon, Phillip Isola, M. Irani
{"title":"InGAN: Capturing and Retargeting the “DNA” of a Natural Image","authors":"Assaf Shocher, Shai Bagon, Phillip Isola, M. Irani","doi":"10.1109/ICCV.2019.00459","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) typically learn a distribution of images in a large image dataset, and are then able to generate new images from this distribution. However, each natural image has its own internal statistics, captured by its unique distribution of patches. In this paper we propose an ``Internal GAN'' (InGAN) -- an image-specific GAN -- which trains on a single input image and learns its internal distribution of patches. It is then able to synthesize a plethora of new natural images of significantly different sizes, shapes and aspect-ratios – all with the same internal patch-distribution (same ``DNA'') as the input image. In particular, despite large changes in global size/shape of the image, all elements inside the image maintain their local size/shape. InGAN is fully unsupervised, requiring no additional data other than the input image itself. Once trained on the input image, it can remap the input to any size or shape in a single feedforward pass, while preserving the same internal patch distribution. InGAN provides a unified framework for a variety of tasks, bridging the gap between textures and natural images.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"4491-4500"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

Generative Adversarial Networks (GANs) typically learn a distribution of images in a large image dataset, and are then able to generate new images from this distribution. However, each natural image has its own internal statistics, captured by its unique distribution of patches. In this paper we propose an ``Internal GAN'' (InGAN) -- an image-specific GAN -- which trains on a single input image and learns its internal distribution of patches. It is then able to synthesize a plethora of new natural images of significantly different sizes, shapes and aspect-ratios – all with the same internal patch-distribution (same ``DNA'') as the input image. In particular, despite large changes in global size/shape of the image, all elements inside the image maintain their local size/shape. InGAN is fully unsupervised, requiring no additional data other than the input image itself. Once trained on the input image, it can remap the input to any size or shape in a single feedforward pass, while preserving the same internal patch distribution. InGAN provides a unified framework for a variety of tasks, bridging the gap between textures and natural images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InGAN:捕捉和重新定位自然图像的“DNA”
生成式对抗网络(GANs)通常学习大型图像数据集中的图像分布,然后能够从该分布中生成新图像。然而,每个自然图像都有自己的内部统计数据,通过其独特的斑块分布来捕获。在本文中,我们提出了一种“内部GAN”(InGAN)——一种特定于图像的GAN——它在单个输入图像上进行训练并学习其内部补丁分布。然后,它能够合成大量大小、形状和纵横比明显不同的新自然图像——所有这些图像都具有与输入图像相同的内部斑块分布(相同的“DNA”)。特别是,尽管图像的全局尺寸/形状发生了很大的变化,但图像内的所有元素都保持其局部尺寸/形状。InGAN是完全无监督的,除了输入图像本身之外,不需要额外的数据。一旦对输入图像进行训练,它可以在单个前馈通道中将输入重新映射为任何大小或形状,同时保持相同的内部补丁分布。InGAN为各种任务提供了统一的框架,弥合了纹理和自然图像之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1