Offshore Logistics: Scenario Planning and Installation Modeling of Floating Offshore Wind Projects

E. S. Torres, P. Thies, M. Lawless
{"title":"Offshore Logistics: Scenario Planning and Installation Modeling of Floating Offshore Wind Projects","authors":"E. S. Torres, P. Thies, M. Lawless","doi":"10.1115/1.4056882","DOIUrl":null,"url":null,"abstract":"\n The offshore installation, logistics, and commissioning activities are currently estimated to make up 20% to 30% of the capital expenditures (CAPEX) of offshore wind projects. Technical and geographical factors affect both the CAPEX during construction and the installation schedule, such as a lack of supporting port infrastructure, the availability of specialized vessels, the distance from the wind farm to shore, accessibility, water depths, and seabed conditions. In addition, there are significant risks during the construction phase, such as uncertain durations due to the sensitivity of marine operations to weather conditions. Identifying supply chain requirements is critical in the early stages of project planning in order to avoid time delays and cost overruns during the transport and installation process. This study explores and analyzes the logistic requirements and installation methods of a floating offshore wind (FOW) technology. Using an advanced forecasting and decision support tool, realistic case scenarios are simulated at a variety of potential sites for FOW deployment across the UK. Technical risks associated with installation strategies are identified and classified. The results provide a comparison of key installation performance indicators of each case scenario (e.g., installation rate per wind turbine, weather downtime). This study is of interest to researchers, offshore wind project developers, service providers, and other key stakeholders seeking to optimize planning and logistics to drive down CAPEX costs, reduce the construction downtime, and minimize risks during marine operations.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"4161 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The offshore installation, logistics, and commissioning activities are currently estimated to make up 20% to 30% of the capital expenditures (CAPEX) of offshore wind projects. Technical and geographical factors affect both the CAPEX during construction and the installation schedule, such as a lack of supporting port infrastructure, the availability of specialized vessels, the distance from the wind farm to shore, accessibility, water depths, and seabed conditions. In addition, there are significant risks during the construction phase, such as uncertain durations due to the sensitivity of marine operations to weather conditions. Identifying supply chain requirements is critical in the early stages of project planning in order to avoid time delays and cost overruns during the transport and installation process. This study explores and analyzes the logistic requirements and installation methods of a floating offshore wind (FOW) technology. Using an advanced forecasting and decision support tool, realistic case scenarios are simulated at a variety of potential sites for FOW deployment across the UK. Technical risks associated with installation strategies are identified and classified. The results provide a comparison of key installation performance indicators of each case scenario (e.g., installation rate per wind turbine, weather downtime). This study is of interest to researchers, offshore wind project developers, service providers, and other key stakeholders seeking to optimize planning and logistics to drive down CAPEX costs, reduce the construction downtime, and minimize risks during marine operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上物流:浮动海上风电项目的场景规划和安装建模
海上安装、物流和调试活动目前估计占海上风电项目资本支出(CAPEX)的20%至30%。技术和地理因素会影响施工期间的资本支出和安装进度,例如缺乏配套的港口基础设施、专业船只的可用性、风电场到海岸的距离、可达性、水深和海底条件。此外,在建造阶段存在重大风险,例如由于海上作业对天气条件的敏感性而不确定的持续时间。为了避免运输和安装过程中的时间延误和成本超支,确定供应链需求在项目规划的早期阶段至关重要。本研究探讨和分析了海上浮式风电技术的后勤要求和安装方法。使用先进的预测和决策支持工具,在英国各地各种潜在的FOW部署地点模拟了现实情况。与安装策略相关的技术风险被识别和分类。结果提供了每种情况下关键安装性能指标的比较(例如,每个风力涡轮机的安装率,天气停机时间)。这项研究对研究人员、海上风电项目开发商、服务提供商和其他寻求优化规划和物流以降低资本支出成本、减少施工停机时间、最大限度地降低海上作业风险的关键利益相关者很有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1