Digital AFC control of a three-phase three-wire unity-power-factor PWM rectifier

Marcos Orellana, R. Griñó
{"title":"Digital AFC control of a three-phase three-wire unity-power-factor PWM rectifier","authors":"Marcos Orellana, R. Griñó","doi":"10.1109/ASCC.2013.6606312","DOIUrl":null,"url":null,"abstract":"Nowadays, ac/dc power converters must fulfill more and more design constraints with respect to the electrical grid: harmonics reduction, operation with sags and swells and/or high grid impedances, etc. This is a challenge for the controllers, since they must be robust enough to ensure the stability of the system, specially when working the conditions are not the ideal ones. In this paper, a discrete-time control technique based on Adaptive Feed-forward Cancellation (AFC) is proposed for a three-phase three-wire rectifier with a LCL input filter. The continuous-time design method for resonators has been translated into the discrete-time domain. Thus, the controller has been entirely designed in discrete-time, avoiding approximate conversions of the controller from the continuous-time domain. Besides, the usual unit computational delay in sampled-data control systems is taken into account. The simulation results show that this kind of resonant control is not only robust, but also presents a good performance.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, ac/dc power converters must fulfill more and more design constraints with respect to the electrical grid: harmonics reduction, operation with sags and swells and/or high grid impedances, etc. This is a challenge for the controllers, since they must be robust enough to ensure the stability of the system, specially when working the conditions are not the ideal ones. In this paper, a discrete-time control technique based on Adaptive Feed-forward Cancellation (AFC) is proposed for a three-phase three-wire rectifier with a LCL input filter. The continuous-time design method for resonators has been translated into the discrete-time domain. Thus, the controller has been entirely designed in discrete-time, avoiding approximate conversions of the controller from the continuous-time domain. Besides, the usual unit computational delay in sampled-data control systems is taken into account. The simulation results show that this kind of resonant control is not only robust, but also presents a good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三相三线制单位功率因数PWM整流器的数字AFC控制
如今,交流/直流电源变换器必须满足越来越多的电网设计约束:谐波降低,运行与下垂和膨胀和/或高电网阻抗等。这对控制器来说是一个挑战,因为它们必须足够鲁棒以确保系统的稳定性,特别是在工作条件不是理想的情况下。针对带LCL输入滤波器的三相三线制整流器,提出了一种基于自适应前馈抵消(AFC)的离散时间控制技术。将谐振器的连续时间设计方法转化为离散时间域。因此,控制器完全在离散时间内设计,避免了控制器从连续时间域的近似转换。此外,还考虑了采样数据控制系统中常见的单元计算延迟。仿真结果表明,这种谐振控制不仅具有鲁棒性,而且具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable double resonant controller for fast image scanning of atomic force microscope FA system integration using robotic intelligent componets Parameter identification of bacterial growth bioprocesses using particle swarm optimization Velocity planning to optimize traction losses in a City-Bus Equipped with Permanent Magnet Three-Phase Synchronous Motors Stabilization of uncertain discrete time-delayed systems via delta operator approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1