{"title":"Comparison of Dielectric Properties of Traditional and High-Oleic Runner-Type Peanuts at Microwave Frequencies","authors":"M. Lewis, S. Trabelsi","doi":"10.13031/trans.14323","DOIUrl":null,"url":null,"abstract":"HighlightsPermittivity measurements were taken for traditional and high-oleic runner-type peanut pods and kernels at microwave frequencies.The dielectric constant, loss factor, loss tangent, and complex plane were compared between the two cultivars to observe any effect caused by the high-oleic trait.Despite differences in composition, minimal to no differences were observed in permittivity between the two cultivars.Abstract. Different cultivars of peanuts containing higher amounts of oleic acid have been developed to improve oxidative stability and overall peanut quality. Increasing oleic acid levels and decreasing linoleic acid levels in peanuts deter lipid oxidation, preventing the creation of off-flavors and increasing the shelf life. Since their conception, high-oleic peanuts have been tested from chemical and sensory perspectives to observe differences between them and traditional peanuts. Such tests have shown minimal differences, if any. However, tests to observe the effect of changing the levels of oleic and linoleic acid on permittivity, which is often used for nondestructive determination of the moisture content and bulk density of foods and agricultural products, have not been reported. Thus, a vector network analyzer (VNA) was used to take free-space transmission measurements of the complex permittivities of high-oleic and traditional runner-type peanut pods and kernels. Measurements were taken at 23°C between 5 and 9 GHz. Measurements yielded the dielectric constant and loss factor, which are often correlated to moisture content. Analysis was performed to compare the changes in the dielectric constant, loss factor, and loss tangent with moisture content for high-oleic and traditional peanuts. Linear trends were observed for each parameter with increasing moisture content for both cultivars. Results from the complex plane showed coefficient of determination (r2) values greater than 0.9 for pods and kernels. Therefore, at microwave frequencies, changing the levels of oleic and linoleic acid within the peanuts was observed to have minimal to no effect on their permittivity. Thus, moisture calibrations based on correlations between dielectric properties and moisture content for traditional runner-type peanuts can be applied to high-oleic cultivars. Keywords: Dielectric properties, Free-space transmission measurements, Microwave measurements, Oleic acid, Peanut kernels, Peanut pods.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"482 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/trans.14323","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
HighlightsPermittivity measurements were taken for traditional and high-oleic runner-type peanut pods and kernels at microwave frequencies.The dielectric constant, loss factor, loss tangent, and complex plane were compared between the two cultivars to observe any effect caused by the high-oleic trait.Despite differences in composition, minimal to no differences were observed in permittivity between the two cultivars.Abstract. Different cultivars of peanuts containing higher amounts of oleic acid have been developed to improve oxidative stability and overall peanut quality. Increasing oleic acid levels and decreasing linoleic acid levels in peanuts deter lipid oxidation, preventing the creation of off-flavors and increasing the shelf life. Since their conception, high-oleic peanuts have been tested from chemical and sensory perspectives to observe differences between them and traditional peanuts. Such tests have shown minimal differences, if any. However, tests to observe the effect of changing the levels of oleic and linoleic acid on permittivity, which is often used for nondestructive determination of the moisture content and bulk density of foods and agricultural products, have not been reported. Thus, a vector network analyzer (VNA) was used to take free-space transmission measurements of the complex permittivities of high-oleic and traditional runner-type peanut pods and kernels. Measurements were taken at 23°C between 5 and 9 GHz. Measurements yielded the dielectric constant and loss factor, which are often correlated to moisture content. Analysis was performed to compare the changes in the dielectric constant, loss factor, and loss tangent with moisture content for high-oleic and traditional peanuts. Linear trends were observed for each parameter with increasing moisture content for both cultivars. Results from the complex plane showed coefficient of determination (r2) values greater than 0.9 for pods and kernels. Therefore, at microwave frequencies, changing the levels of oleic and linoleic acid within the peanuts was observed to have minimal to no effect on their permittivity. Thus, moisture calibrations based on correlations between dielectric properties and moisture content for traditional runner-type peanuts can be applied to high-oleic cultivars. Keywords: Dielectric properties, Free-space transmission measurements, Microwave measurements, Oleic acid, Peanut kernels, Peanut pods.
期刊介绍:
This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.