Adaptive and Dynamic Regularization for Rolling Guidance Image Filtering

M. Fukatsu, S. Yoshizawa, H. Takemura, H. Yokota
{"title":"Adaptive and Dynamic Regularization for Rolling Guidance Image Filtering","authors":"M. Fukatsu, S. Yoshizawa, H. Takemura, H. Yokota","doi":"10.2312/pg.20221245","DOIUrl":null,"url":null,"abstract":"Separating shapes and textures of digital images at different scales is useful in computer graphics. The Rolling Guidance (RG) filter, which removes structures smaller than a specified scale while preserving salient edges, has attracted considerable atten-tion. Conventional RG-based filters have some drawbacks, including smoothness/sharpness quality dependence on scale and non-uniform convergence. This paper proposes a novel RG-based image filter that has more stable filtering quality at varying scales. Our filtering approach is an adaptive and dynamic regularization for a recursive regression model in the RG framework to produce more edge saliency and appropriate scale convergence. Our numerical experiments demonstrated filtering results with uniform convergence and high accuracy for varying scales.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"323 1","pages":"43-48"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20221245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Separating shapes and textures of digital images at different scales is useful in computer graphics. The Rolling Guidance (RG) filter, which removes structures smaller than a specified scale while preserving salient edges, has attracted considerable atten-tion. Conventional RG-based filters have some drawbacks, including smoothness/sharpness quality dependence on scale and non-uniform convergence. This paper proposes a novel RG-based image filter that has more stable filtering quality at varying scales. Our filtering approach is an adaptive and dynamic regularization for a recursive regression model in the RG framework to produce more edge saliency and appropriate scale convergence. Our numerical experiments demonstrated filtering results with uniform convergence and high accuracy for varying scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滚动制导图像滤波的自适应和动态正则化
在计算机图形学中,在不同尺度上分离数字图像的形状和纹理是很有用的。滚动制导(RG)滤波器在保留显著边缘的同时去除小于指定尺度的结构,引起了相当大的关注。传统的基于rg的滤波器存在一些缺点,包括平滑/锐度质量依赖于尺度和非均匀收敛。本文提出了一种新的基于rg的图像滤波器,该滤波器在不同尺度下具有更稳定的滤波质量。我们的滤波方法是RG框架中递归回归模型的自适应动态正则化,以产生更多的边缘显著性和适当的规模收敛。数值实验表明,滤波结果在不同尺度下收敛均匀,精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1