{"title":"Acoustic impedance extraction method and acoustic characteristics analysis of perforated plates under grazing flow","authors":"Huabing Wen, Chunming Wu, Taiying Wu, Junhua Guo","doi":"10.1177/14613484231186694","DOIUrl":null,"url":null,"abstract":"As an important component of inlet and exhaust mufflers, the acoustic characteristics of perforated components are inevitably affected by the flow of air. Therefore, obtaining the acoustic impedance of the perforated element under airflow conditions is a prerequisite for accurate calculation of the muffler’s muffling performance. In this work, the frequency domain linear Navier–Stokes (L-NS) method is used to extract the acoustic impedance of perforated plates under grazing flow. The predicted perforated acoustic impedance is consistent with the calculation results of published acoustic impedance expression, and the impedance boundary condition is defined to calculate the transmission loss (TL) of the perforated muffler, which agrees well with the experimental results and verifies the accuracy of the method. The effect of perforation angles on the transmission loss of mufflers in different Mach numbers ( Ma) and aperture plate thickness ratio ( dh/ tp) is analyzed by the frequency domain L-NS method. The results show that when 1≤ dh/ tp<2 and Ma≤2, the effect of perforation angles on the muffler performance is obvious, and the angle tilted upstream shifts the resonant frequency to a lower frequency while its corresponding peak value is also increased. As an engineering application, it has certain significance for the prediction of muffler muffling performance and the regulation of the muffling frequency band.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231186694","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
As an important component of inlet and exhaust mufflers, the acoustic characteristics of perforated components are inevitably affected by the flow of air. Therefore, obtaining the acoustic impedance of the perforated element under airflow conditions is a prerequisite for accurate calculation of the muffler’s muffling performance. In this work, the frequency domain linear Navier–Stokes (L-NS) method is used to extract the acoustic impedance of perforated plates under grazing flow. The predicted perforated acoustic impedance is consistent with the calculation results of published acoustic impedance expression, and the impedance boundary condition is defined to calculate the transmission loss (TL) of the perforated muffler, which agrees well with the experimental results and verifies the accuracy of the method. The effect of perforation angles on the transmission loss of mufflers in different Mach numbers ( Ma) and aperture plate thickness ratio ( dh/ tp) is analyzed by the frequency domain L-NS method. The results show that when 1≤ dh/ tp<2 and Ma≤2, the effect of perforation angles on the muffler performance is obvious, and the angle tilted upstream shifts the resonant frequency to a lower frequency while its corresponding peak value is also increased. As an engineering application, it has certain significance for the prediction of muffler muffling performance and the regulation of the muffling frequency band.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.