{"title":"Centaur: Host-Side SSD Caching for Storage Performance Control","authors":"Ricardo Koller, A. Mashtizadeh, R. Rangaswami","doi":"10.1109/ICAC.2015.44","DOIUrl":null,"url":null,"abstract":"Host-side SSD caches represent a powerful knob for improving and controlling storage performance and improve performance isolation. We present Centaur, as a host-side SSD caching solution that uses cache sizing as a control knob to achieve storage performance goals. Centaur implements dynamically partitioned per-VM caches with per-partition local replacement to provide both lower cache miss rate, better performance isolation and performance control for VM workloads. It uses SSD cache sizing as a universal knob for meeting a variety of workload-specific goals including per-VM latency and IOPS reservations, proportional share fairness, and aggregate optimizations such as minimizing the average latency across VMs. We implemented Centaur for the VMware ESX hyper visor. With Centaur, times for simultaneously booting 28 virtual desktops improve by 42% relative to a non-caching system and by 18% relative to a unified caching system. Centaur also implements per-VM shares for latency with less than 5% error when running micro benchmarks, and enforces latency and IOPS reservations on OLTP workloads with less than 10% error.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"69 1","pages":"51-60"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Host-side SSD caches represent a powerful knob for improving and controlling storage performance and improve performance isolation. We present Centaur, as a host-side SSD caching solution that uses cache sizing as a control knob to achieve storage performance goals. Centaur implements dynamically partitioned per-VM caches with per-partition local replacement to provide both lower cache miss rate, better performance isolation and performance control for VM workloads. It uses SSD cache sizing as a universal knob for meeting a variety of workload-specific goals including per-VM latency and IOPS reservations, proportional share fairness, and aggregate optimizations such as minimizing the average latency across VMs. We implemented Centaur for the VMware ESX hyper visor. With Centaur, times for simultaneously booting 28 virtual desktops improve by 42% relative to a non-caching system and by 18% relative to a unified caching system. Centaur also implements per-VM shares for latency with less than 5% error when running micro benchmarks, and enforces latency and IOPS reservations on OLTP workloads with less than 10% error.