Empirical assessment of the relation between ecological connectivity and land complexity based on information-theoretic metrics

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2021-12-01 DOI:10.1016/j.ecocom.2021.100969
Derya Gülçin
{"title":"Empirical assessment of the relation between ecological connectivity and land complexity based on information-theoretic metrics","authors":"Derya Gülçin","doi":"10.1016/j.ecocom.2021.100969","DOIUrl":null,"url":null,"abstract":"<div><p><span>Habitat fragmentation<span> and connectivity loss pose significant threats to biodiversity at both local and landscape levels. Strategies to increase ecological connectivity and preserve strong connectivity are important for dealing with the potential threat of habitat degradation. Various metrics have been used to measure (i.e., quantify) landscape composition and configuration in landscape ecology. However, their relationship with ecological connectivity must be understood to interpret landscape patterns comprehensively. In the present study, correlations between ecological connectivity and land complexity are examined based on information-theory metrics. Two primary questions are explored: (1) to what extent are landscape mosaic measures of entropy correlated with ecological connectivity, with landscape gradient-based measures, and with each other? (2) are landscape gradient-based entropy measures correlated with ecological connectivity more than discrete entropy measures? Results show that all information theoretic metrics are statistically significant (</span></span><em>p</em> &lt; 0.05) for modelling ecological connectivity. Among categorically-based indices, the relationship between ECI and joint entropy was the most significant, while a generalized additive model indicated that Boltzmann entropy could predict the ecological connectivity index, explaining ∼60% of the variance. Therefore, configurational entropy can be used for improving ecological connectivity models.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100969"},"PeriodicalIF":3.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000623","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Habitat fragmentation and connectivity loss pose significant threats to biodiversity at both local and landscape levels. Strategies to increase ecological connectivity and preserve strong connectivity are important for dealing with the potential threat of habitat degradation. Various metrics have been used to measure (i.e., quantify) landscape composition and configuration in landscape ecology. However, their relationship with ecological connectivity must be understood to interpret landscape patterns comprehensively. In the present study, correlations between ecological connectivity and land complexity are examined based on information-theory metrics. Two primary questions are explored: (1) to what extent are landscape mosaic measures of entropy correlated with ecological connectivity, with landscape gradient-based measures, and with each other? (2) are landscape gradient-based entropy measures correlated with ecological connectivity more than discrete entropy measures? Results show that all information theoretic metrics are statistically significant (p < 0.05) for modelling ecological connectivity. Among categorically-based indices, the relationship between ECI and joint entropy was the most significant, while a generalized additive model indicated that Boltzmann entropy could predict the ecological connectivity index, explaining ∼60% of the variance. Therefore, configurational entropy can be used for improving ecological connectivity models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息测度的生态连通性与土地复杂性关系实证评价
栖息地破碎化和连通性丧失对地方和景观层面的生物多样性构成重大威胁。加强生态连通性和保持强连通性的战略对于应对栖息地退化的潜在威胁至关重要。在景观生态学中,各种各样的指标被用来衡量(即量化)景观的组成和配置。然而,要全面地解释景观格局,必须了解它们与生态连通性的关系。在本研究中,生态连通性和土地复杂性之间的相关性是基于信息理论的度量。本文探讨了两个主要问题:(1)景观熵的马赛克度量与生态连通性、基于景观梯度的度量以及彼此之间的相关性在多大程度上?(2)基于景观梯度的熵测度是否比离散熵测度与生态连通性更相关?结果表明,所有信息论指标均具有统计学显著性(p <0.05)模拟生态连通性。在基于分类的指数中,ECI与联合熵之间的关系最为显著,而广义加性模型表明,Boltzmann熵可以预测生态连通性指数,解释了60%的方差。因此,构型熵可以用于改进生态连通性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1