{"title":"Risks associated with the evolution in the compounding process of parenteral nutrition solutions: use of the “FMECA” method","authors":"G. Dozias, J. Thiec, Gwenola Le Den, V. Cogulet","doi":"10.1515/pthp-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract Objectives An audit of the practices of our compounding unit was performed in 2016: areas of improvement were proposed, such as the automatization of our process. An automated compounder was acquired (MediMixmulti® MF4120R). The aim of the study was to anticipate the risks of the new process, in order to improve its security and to support the professionals during this evolution of our compounding process. Methods The Failure Modes, Effects and Criticality Analysis (FMECA) method was carried out in order to detect potential failures brought by the automatization of parenteral nutrition (PN) manufacturing in the new process. The FMECA method included four steps that were divided into five work sessions of one and a half hour each over a period of two months. A working group made up of professionals involved in the PN production process was set up (pharmacists, pharmacy resident, manager and pharmaceutical technician). Results Fifty failure modes were determined by this analysis, of which 96% could have an impact on the patient, 90% on the health staff and 74% on the product. The FMECA shows that 18 failure modes have a tolerable or unacceptable CI (CI≥100) for which it is necessary to implement preventive measures as a priority. This work also made it possible to review the barrier measures already in place for the current process. Conclusions The risk analysis allowed us to analyze the failures of both the actual and the future manufacturing processes. Once the most critical failure modes were identified, specific recommendations were proposed and an improvement plan was established. First, the compounder needs to be fully qualified. Then, the quality manual of the PN process will be reviewed and updated. Once these steps are completed, the pharmacy professionals (pharmacists, pharmacy technicians) will be trained and the PN production will be performed using the automated compounder on a daily basis.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pthp-2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Objectives An audit of the practices of our compounding unit was performed in 2016: areas of improvement were proposed, such as the automatization of our process. An automated compounder was acquired (MediMixmulti® MF4120R). The aim of the study was to anticipate the risks of the new process, in order to improve its security and to support the professionals during this evolution of our compounding process. Methods The Failure Modes, Effects and Criticality Analysis (FMECA) method was carried out in order to detect potential failures brought by the automatization of parenteral nutrition (PN) manufacturing in the new process. The FMECA method included four steps that were divided into five work sessions of one and a half hour each over a period of two months. A working group made up of professionals involved in the PN production process was set up (pharmacists, pharmacy resident, manager and pharmaceutical technician). Results Fifty failure modes were determined by this analysis, of which 96% could have an impact on the patient, 90% on the health staff and 74% on the product. The FMECA shows that 18 failure modes have a tolerable or unacceptable CI (CI≥100) for which it is necessary to implement preventive measures as a priority. This work also made it possible to review the barrier measures already in place for the current process. Conclusions The risk analysis allowed us to analyze the failures of both the actual and the future manufacturing processes. Once the most critical failure modes were identified, specific recommendations were proposed and an improvement plan was established. First, the compounder needs to be fully qualified. Then, the quality manual of the PN process will be reviewed and updated. Once these steps are completed, the pharmacy professionals (pharmacists, pharmacy technicians) will be trained and the PN production will be performed using the automated compounder on a daily basis.