An Optimized Discrete Data Classification Method in N-Dimensional

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2022-05-28 DOI:10.1155/2022/8199872
Dongyung Kim
{"title":"An Optimized Discrete Data Classification Method in N-Dimensional","authors":"Dongyung Kim","doi":"10.1155/2022/8199872","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We propose a discrete data classification method of scattered data in <i>N</i>-dimensional by solving the minimax problem for a set of points. The current research is extended from 2-dimensional and 3-dimensional to <i>N</i>-dimensional. The problem can be applied to artificial intelligence classification problems (machine learning, deep learning), point data analysis problems (data science problem), the optimized design of nanoscale circuits, and the location of facility problems, circle detection on 2D image, or sphere detection on depth image. We generalized the discrete data classification methodology in <i>N</i>-dimensional. Finally, we resolved to find an exact solution of the location of a manifold for our suggested problem in <i>N</i>-dimensional.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/8199872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/8199872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a discrete data classification method of scattered data in N-dimensional by solving the minimax problem for a set of points. The current research is extended from 2-dimensional and 3-dimensional to N-dimensional. The problem can be applied to artificial intelligence classification problems (machine learning, deep learning), point data analysis problems (data science problem), the optimized design of nanoscale circuits, and the location of facility problems, circle detection on 2D image, or sphere detection on depth image. We generalized the discrete data classification methodology in N-dimensional. Finally, we resolved to find an exact solution of the location of a manifold for our suggested problem in N-dimensional.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种优化的N维离散数据分类方法
通过求解点集的极大极小问题,提出了一种N维离散数据分类方法。目前的研究已经从二维、三维扩展到N维。该问题可应用于人工智能分类问题(机器学习、深度学习)、点数据分析问题(数据科学问题)、纳米级电路的优化设计、设施定位问题、二维图像上的圆检测、深度图像上的球体检测等。推广了N维离散数据分类方法。最后,我们决定在N维中找到流形位置的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Study of ABC-Type Fractal–Fractional Dynamical Model of HIV/AIDS Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations Estimating the Trends of Volatility in the Risk Equity Market Over the Short and Long Terms The Fractional Variable-Order Grassi–Miller Map: Chaos, Complexity, and Control On the Efficiency of the Newly Developed Composite Randomized Response Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1