Analysis of the Influence of Laser Power on the Microstructure and Properties of a Titanium Alloy-Reinforced Boron Carbide Matrix Composite (Ti6Al4V-B4C)
{"title":"Analysis of the Influence of Laser Power on the Microstructure and Properties of a Titanium Alloy-Reinforced Boron Carbide Matrix Composite (Ti6Al4V-B4C)","authors":"M. O. Ogunlana, E. Akinlabi, M. Erinosho","doi":"10.5545/SV-JME.2016.4159","DOIUrl":null,"url":null,"abstract":"Laser Metal Deposition (LMD) process is a means of producing metal composites with the aid of a laser beam, ejected onto the substrate with the participating powder and fused together after solidification. In this research work, Ti6Al4V alloy is fused with 20 wt % of B4C in order to form metal matrix composites (MMCs). Using the Ytterbium Fibre Laser System powdered at 3000 W, the laser powers were varied between 800 W and 2400 W while all other supporting process parameters were kept constant. The deposited Ti6Al4V-B4C composites were characterized through the surfacing microstructure, microhardness and dry sliding wear. The microstructural properties of the deposited samples were profound, with a Widmanstatten structure of α-Ti, β-Ti and (α+β) Ti phases. The microhardness tests revealed that the composites deposited with a laser power of 2000 W exhibited the highest hardness value and standard deviation of HV 445 ± 61. Furthermore, characterisation revealed that the sample produced with the laser power of 800 W had the lowest wear loss and wear rate of 35.2 × 10–3 mm3 and 6.42 × 10-4 mm3/Nm. However, the motivation for this work is to improve the material properties of the Ti6Al4V alloy for surface engineering applications.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"42 1","pages":"363-373"},"PeriodicalIF":1.2000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/SV-JME.2016.4159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 6
Abstract
Laser Metal Deposition (LMD) process is a means of producing metal composites with the aid of a laser beam, ejected onto the substrate with the participating powder and fused together after solidification. In this research work, Ti6Al4V alloy is fused with 20 wt % of B4C in order to form metal matrix composites (MMCs). Using the Ytterbium Fibre Laser System powdered at 3000 W, the laser powers were varied between 800 W and 2400 W while all other supporting process parameters were kept constant. The deposited Ti6Al4V-B4C composites were characterized through the surfacing microstructure, microhardness and dry sliding wear. The microstructural properties of the deposited samples were profound, with a Widmanstatten structure of α-Ti, β-Ti and (α+β) Ti phases. The microhardness tests revealed that the composites deposited with a laser power of 2000 W exhibited the highest hardness value and standard deviation of HV 445 ± 61. Furthermore, characterisation revealed that the sample produced with the laser power of 800 W had the lowest wear loss and wear rate of 35.2 × 10–3 mm3 and 6.42 × 10-4 mm3/Nm. However, the motivation for this work is to improve the material properties of the Ti6Al4V alloy for surface engineering applications.
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.