The Generalized Coherence Algorithm on Seismic Data Based on the Kernel Function

F. Sun, J. Gao, B. Zhang, Z. Wang, N. Liu
{"title":"The Generalized Coherence Algorithm on Seismic Data Based on the Kernel Function","authors":"F. Sun, J. Gao, B. Zhang, Z. Wang, N. Liu","doi":"10.3997/2214-4609.201901172","DOIUrl":null,"url":null,"abstract":"Summary Traditional coherence algorithms most rely on the basic assumption that the relationship between seismic traces is linear and obeys Gaussian distribution. However, in practice, correlation between seismic traces is usually nonlinear, and the seismic traces are non-Gaussian signals. The canonical correlation analysis (CCA) cannot describe the similarity between adjacent seismic traces in detail. To overcome this problem and improve the resolution and robustness of the coherence algorithm, we introduce the kernelized correlation instead of the linear correlation in the C3 algorithm. Note that the kernelized correlation is a generalized correlation with various kernel functions. Then, we discuss how to choose the appropriate kernel function in detail. To demonstrate the validity of the proposed algorithm, we apply it to field data using different kernels. The results demonstrate the effectiveness of the proposed algorithm to describe geological discontinuity and heterogeneity, such as fluvial channels and faults.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201901172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Traditional coherence algorithms most rely on the basic assumption that the relationship between seismic traces is linear and obeys Gaussian distribution. However, in practice, correlation between seismic traces is usually nonlinear, and the seismic traces are non-Gaussian signals. The canonical correlation analysis (CCA) cannot describe the similarity between adjacent seismic traces in detail. To overcome this problem and improve the resolution and robustness of the coherence algorithm, we introduce the kernelized correlation instead of the linear correlation in the C3 algorithm. Note that the kernelized correlation is a generalized correlation with various kernel functions. Then, we discuss how to choose the appropriate kernel function in detail. To demonstrate the validity of the proposed algorithm, we apply it to field data using different kernels. The results demonstrate the effectiveness of the proposed algorithm to describe geological discontinuity and heterogeneity, such as fluvial channels and faults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核函数的地震数据广义相干算法
传统的相干算法大多依赖于地震迹线之间的线性关系和服从高斯分布的基本假设。然而,在实际应用中,地震道之间的相关性通常是非线性的,地震道是非高斯信号。典型相关分析(CCA)不能详细描述相邻地震道之间的相似性。为了克服这一问题,提高相干算法的分辨率和鲁棒性,我们在C3算法中引入了核相关来代替线性相关。请注意,核相关是与各种核函数的广义相关。然后,详细讨论了如何选择合适的核函数。为了证明该算法的有效性,我们使用不同的核将其应用于现场数据。结果表明,该算法在描述地质不连续性和非均质性(如河道和断层)方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1