{"title":"Improved local testing for multiplicity codes","authors":"Dan Karliner, A. Ta-Shma","doi":"10.4230/LIPIcs.APPROX/RANDOM.2022.11","DOIUrl":null,"url":null,"abstract":"Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in F mp . Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [6] showed that the plane test , which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees . In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM p ( m, d, s ) over prime fields with arbitrary d are locally testable by an appropriate k -flat test , which tests the degree of the codeword on a random k -dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [6] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"39 1","pages":"11:1-11:19"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in F mp . Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [6] showed that the plane test , which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees . In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM p ( m, d, s ) over prime fields with arbitrary d are locally testable by an appropriate k -flat test , which tests the degree of the codeword on a random k -dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [6] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [5]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes.