Zenepe Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, Mikael Sjödin, S. Mubeen
{"title":"QoS-MAN: A Novel QoS Mapping Algorithm for TSN-5G Flows","authors":"Zenepe Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, Mikael Sjödin, S. Mubeen","doi":"10.1109/RTCSA55878.2022.00030","DOIUrl":null,"url":null,"abstract":"Integrating wired Ethernet networks, such as Time-Sensitive Networks (TSN), to 5G cellular network requires a flow management technique to efficiently map TSN traffic to 5G Quality-of-Service (QoS) flows. The 3GPP Release 16 provides a set of predefined QoS characteristics, such as priority level, packet delay budget, and maximum data burst volume, which can be used for the 5G QoS flows. Within this context, mapping TSN traffic flows to 5G QoS flows in an integrated TSN-5G network is of paramount importance as the mapping can significantly impact on the end-to-end QoS in the integrated network. In this paper, we present a novel and efficient mapping algorithm to map different TSN traffic flows to 5G QoS flows. To the best of our knowledge, this is the first QoS-aware mapping algorithm based on the application constraints used to exchange flows between TSN and 5G network domains. We evaluate the proposed mapping algorithm on synthetic scenarios with random sets of constraints on deadline, jitter, bandwidth, and packet loss rate. The evaluation results show that the proposed mapping algorithm can fulfill over 90% of the applications’ constraints.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"10 1","pages":"220-227"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA55878.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 6
Abstract
Integrating wired Ethernet networks, such as Time-Sensitive Networks (TSN), to 5G cellular network requires a flow management technique to efficiently map TSN traffic to 5G Quality-of-Service (QoS) flows. The 3GPP Release 16 provides a set of predefined QoS characteristics, such as priority level, packet delay budget, and maximum data burst volume, which can be used for the 5G QoS flows. Within this context, mapping TSN traffic flows to 5G QoS flows in an integrated TSN-5G network is of paramount importance as the mapping can significantly impact on the end-to-end QoS in the integrated network. In this paper, we present a novel and efficient mapping algorithm to map different TSN traffic flows to 5G QoS flows. To the best of our knowledge, this is the first QoS-aware mapping algorithm based on the application constraints used to exchange flows between TSN and 5G network domains. We evaluate the proposed mapping algorithm on synthetic scenarios with random sets of constraints on deadline, jitter, bandwidth, and packet loss rate. The evaluation results show that the proposed mapping algorithm can fulfill over 90% of the applications’ constraints.