Manasi Mandal, K. P. Sajilesh, R. R. Chowdhury, D. Singh, P. Biswas, A. Hillier, R. P. Singh
{"title":"Superconducting ground state of the topological superconducting candidates \nTi3X\n (\nX=Ir,Sb\n)","authors":"Manasi Mandal, K. P. Sajilesh, R. R. Chowdhury, D. Singh, P. Biswas, A. Hillier, R. P. Singh","doi":"10.1103/PHYSREVB.103.054501","DOIUrl":null,"url":null,"abstract":"The topologically non-trivial band structure of A15 compounds has drawn attention owing to the possible realization of topological superconductivity. Here, we report a microscopic investigation of the superconducting ground state in A15 compound Ti$_{3}$X (X = Ir, Sb) by muon spectroscopy measurements. Zero field muon measurements have shown that time-reversal symmetry is preserved in these materials. Furthermore, specific heat and a transverse field muon spectroscopy measurement rule out any possibility to have a nodal or anisotropic superconducting gap, revealing a conventional s-wave nature in the superconducting ground state. This work classifies A15 compound Ti$_{3}$X (X = Ir, Sb) as a time-reversal preserved topological superconductor.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.054501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The topologically non-trivial band structure of A15 compounds has drawn attention owing to the possible realization of topological superconductivity. Here, we report a microscopic investigation of the superconducting ground state in A15 compound Ti$_{3}$X (X = Ir, Sb) by muon spectroscopy measurements. Zero field muon measurements have shown that time-reversal symmetry is preserved in these materials. Furthermore, specific heat and a transverse field muon spectroscopy measurement rule out any possibility to have a nodal or anisotropic superconducting gap, revealing a conventional s-wave nature in the superconducting ground state. This work classifies A15 compound Ti$_{3}$X (X = Ir, Sb) as a time-reversal preserved topological superconductor.