A method for obtaining the preventive maintenance interval in the absence of failure time data

IF 2.2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Eksploatacja I Niezawodnosc-Maintenance and Reliability Pub Date : 2022-07-02 DOI:10.17531/ein.2022.3.17
Antonio Sánchez-Herguedas, Angel Mena-Nieto, Francisco Rodrigo-Muñoz
{"title":"A method for obtaining the preventive maintenance interval in the absence of failure time data","authors":"Antonio Sánchez-Herguedas, Angel Mena-Nieto, Francisco Rodrigo-Muñoz","doi":"10.17531/ein.2022.3.17","DOIUrl":null,"url":null,"abstract":"One of the ways to reduce greenhouse gas emissions and other polluting gases caused by ships is to improve their maintenance operations through their life cycle. The maintenance manager usually does not modify the preventive intervals that the equipment manufacturer has designed to reduce the failure. Conditions of use and maintenance often change from design conditions. In these cases, continuing using the manufacturer's preventive intervals can lead to non-optimal management situations. This article proposes a new method to calculate the preventive interval when the hours of failure of the assets are unavailable. Two scenarios were created to test the effectiveness and usefulness of this new method, one without the failure hours and the other with the failure hours corresponding to a bypass valve installed in the engine of a maritime transport surveillance vessel. In an easy and fast way, the proposed method allows the maintenance manager to calculate the preventive interval of equipment that does not have installed an instrument for measuring operating hours installed.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17531/ein.2022.3.17","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

One of the ways to reduce greenhouse gas emissions and other polluting gases caused by ships is to improve their maintenance operations through their life cycle. The maintenance manager usually does not modify the preventive intervals that the equipment manufacturer has designed to reduce the failure. Conditions of use and maintenance often change from design conditions. In these cases, continuing using the manufacturer's preventive intervals can lead to non-optimal management situations. This article proposes a new method to calculate the preventive interval when the hours of failure of the assets are unavailable. Two scenarios were created to test the effectiveness and usefulness of this new method, one without the failure hours and the other with the failure hours corresponding to a bypass valve installed in the engine of a maritime transport surveillance vessel. In an easy and fast way, the proposed method allows the maintenance manager to calculate the preventive interval of equipment that does not have installed an instrument for measuring operating hours installed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在没有故障时间数据的情况下获得预防性维修间隔的方法
减少船舶造成的温室气体和其他污染气体排放的方法之一是在其生命周期内改善其维护操作。维护经理通常不修改设备制造商为减少故障而设计的预防间隔。使用和维护条件经常与设计条件不同。在这些情况下,继续使用制造商的预防间隔可能会导致非最佳管理情况。本文提出了一种在资产不可用时计算预防间隔时间的新方法。为了测试该方法的有效性和实用性,创建了两个场景,一个是没有故障小时,另一个是安装在海上运输监视船发动机上的旁通阀的故障小时。在一个简单和快速的方式,所提出的方法允许维护经理计算设备的预防间隔,没有安装测量仪器安装工作时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
24.00%
发文量
55
审稿时长
3 months
期刊介绍: The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.
期刊最新文献
Study on reliability of emergency braking performance of high-speed and heavy-load monorail crane Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes Reliability Estimation of Retraction Mechanism Kinematic Accuracy under Small Sample Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance Fault Diagnosis of Suspension System Based on Spectrogram Image and Vision Transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1