Trend and prediction of COVID-19 outbreak in Iran: SEIR and ANFIS model

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Polish Journal of Medical Physics and Engineering Pub Date : 2021-09-01 DOI:10.2478/pjmpe-2021-0029
Sajad Shafiekhani, T. H. Khalilabad, S. Rafiei, V. Sadeghi, A. Jafari, N. Gheibi
{"title":"Trend and prediction of COVID-19 outbreak in Iran: SEIR and ANFIS model","authors":"Sajad Shafiekhani, T. H. Khalilabad, S. Rafiei, V. Sadeghi, A. Jafari, N. Gheibi","doi":"10.2478/pjmpe-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract Background: Mathematical and predictive modeling approaches can be used in COVID-19 crisis to forecast the trend of new cases for healthcare management purposes. Given the COVID-19 disease pandemic, the prediction of the epidemic trend of this disease is so important. Methods: We constructed an SEIR (Susceptible-Exposed-Infected-Recovered) model on the COVID-19 outbreak in Iran. We estimated model parameters by the data on notified cases in Iran in the time window 1/22/2020 – 20/7/2021. Global sensitivity analysis is performed to determine the correlation between epidemiological variables and SEIR model parameters and to assess SEIR model robustness against perturbation to parameters. We Combined Adaptive Neuro-Fuzzy Inference System (ANFIS) as a rigorous time series prediction approach with the SEIR model to predict the trend of COVID-19 new cases under two different scenarios including social distance and non-social distance. Results: The SEIR and ANFIS model predicted new cases of COVID-19 for the period February 7, 2021, till August 7, 2021. Model predictions in the non-social distancing scenario indicate that the corona epidemic in Iran may recur as an immortal oscillation and Iran may undergo a recurrence of the third peak. Conclusion: Combining parametrized SEIR model and ANFIS is effective in predicting the trend of COVID-19 new cases in Iran.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Background: Mathematical and predictive modeling approaches can be used in COVID-19 crisis to forecast the trend of new cases for healthcare management purposes. Given the COVID-19 disease pandemic, the prediction of the epidemic trend of this disease is so important. Methods: We constructed an SEIR (Susceptible-Exposed-Infected-Recovered) model on the COVID-19 outbreak in Iran. We estimated model parameters by the data on notified cases in Iran in the time window 1/22/2020 – 20/7/2021. Global sensitivity analysis is performed to determine the correlation between epidemiological variables and SEIR model parameters and to assess SEIR model robustness against perturbation to parameters. We Combined Adaptive Neuro-Fuzzy Inference System (ANFIS) as a rigorous time series prediction approach with the SEIR model to predict the trend of COVID-19 new cases under two different scenarios including social distance and non-social distance. Results: The SEIR and ANFIS model predicted new cases of COVID-19 for the period February 7, 2021, till August 7, 2021. Model predictions in the non-social distancing scenario indicate that the corona epidemic in Iran may recur as an immortal oscillation and Iran may undergo a recurrence of the third peak. Conclusion: Combining parametrized SEIR model and ANFIS is effective in predicting the trend of COVID-19 new cases in Iran.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伊朗新冠肺炎疫情趋势与预测:SEIR和ANFIS模型
背景:在新冠肺炎危机中,可以采用数学和预测建模方法预测新病例趋势,为医疗管理提供依据。鉴于2019冠状病毒病大流行,预测该疾病的流行趋势非常重要。方法:以伊朗新冠肺炎疫情为研究对象,构建易感-暴露-感染-恢复模型。我们根据2020年1月22日至2021年7月20日期间伊朗通报病例的数据估计模型参数。进行全局敏感性分析以确定流行病学变量与SEIR模型参数之间的相关性,并评估SEIR模型对参数扰动的稳健性。我们将自适应神经模糊推理系统(ANFIS)作为严格的时间序列预测方法与SEIR模型相结合,对社会距离和非社会距离两种不同情景下的新冠肺炎病例趋势进行了预测。结果:SEIR和ANFIS模型预测了2021年2月7日至2021年8月7日期间的新发病例。在非社交距离情景下的模型预测表明,伊朗的冠状病毒疫情可能会以一种永久的振荡形式再次出现,伊朗可能会再次出现第三个高峰。结论:参数化SEIR模型与ANFIS相结合可有效预测伊朗新发病例趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Journal of Medical Physics and Engineering
Polish Journal of Medical Physics and Engineering RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.30
自引率
0.00%
发文量
19
期刊介绍: Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.
期刊最新文献
Parametrization of subsegmental infarcts using high spatial resolution 2DSTE and synthetic ultrasonic data Automated differential diagnostics of respiratory diseases using an electronic stethoscope Evaluating the impact of anatomical changes on dose distributions in head and neck cancer Comparing eDQE and eNEQ metrics – is there an alternative approach to assessing image quality in digital mammography? Vascular stiffness in cold pressor test hyper-reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1