The high temperature degradation of ferritic stainless steel in solid carbon atmospheres

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2023-03-28 DOI:10.55713/jmmm.v33i1.1574
Prakeaw Ngamsri, Suwijak Pokwitidkul, Paweena Treewiriyakitja, Penpisuth Thongyoug, Ratchapon Nilprapa, Jennarong Tungtrongpairoj
{"title":"The high temperature degradation of ferritic stainless steel in solid carbon atmospheres","authors":"Prakeaw Ngamsri, Suwijak Pokwitidkul, Paweena Treewiriyakitja, Penpisuth Thongyoug, Ratchapon Nilprapa, Jennarong Tungtrongpairoj","doi":"10.55713/jmmm.v33i1.1574","DOIUrl":null,"url":null,"abstract":"Stainless steel is widely used for many components and parts in coal-fired thermal power plants. AISI 430 ferritic stainless steel (FSS) is one common grade to combat the degradation at high temperatures in coal combustion atmospheres containing flue gas, coal ash, and soot (impure solid carbon particles). However, the effect of the solid carbon particles on the degradation of FSS needs to be clarified. Graphite powder was used to simulate solid carbon atmospheres for investigating the degradation of AISI 430 at high temperatures of 1150℃ to 1350℃ in coal-fired boilers. After the carbothermic reduction, the mass gain of a pre-oxidized sample at 750℃ was approximately 0.0793 mg⸳cm-2 and increased when increasing the reduction temperature. The peak of Fe2O3 and Cr7C3 were detected by X˗ray diffraction (XRD) after the oxidation and reduction test, respectively. Besides, the degree of sensitivity (%DoS) of the samples was measured by double loop electrochemical potentiokinetic reactivation (DL-EPR) technique and increased around 30 times after heating the pre-oxidized sample to 1150℃.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"40 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i1.1574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stainless steel is widely used for many components and parts in coal-fired thermal power plants. AISI 430 ferritic stainless steel (FSS) is one common grade to combat the degradation at high temperatures in coal combustion atmospheres containing flue gas, coal ash, and soot (impure solid carbon particles). However, the effect of the solid carbon particles on the degradation of FSS needs to be clarified. Graphite powder was used to simulate solid carbon atmospheres for investigating the degradation of AISI 430 at high temperatures of 1150℃ to 1350℃ in coal-fired boilers. After the carbothermic reduction, the mass gain of a pre-oxidized sample at 750℃ was approximately 0.0793 mg⸳cm-2 and increased when increasing the reduction temperature. The peak of Fe2O3 and Cr7C3 were detected by X˗ray diffraction (XRD) after the oxidation and reduction test, respectively. Besides, the degree of sensitivity (%DoS) of the samples was measured by double loop electrochemical potentiokinetic reactivation (DL-EPR) technique and increased around 30 times after heating the pre-oxidized sample to 1150℃.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁素体不锈钢在固碳气氛中的高温降解
不锈钢广泛应用于燃煤火力发电厂的许多零部件。AISI 430铁素体不锈钢(FSS)是在含有烟道气、煤灰和煤烟(不纯固体碳颗粒)的煤燃烧气氛中对抗高温降解的常用等级。然而,固体碳颗粒对FSS降解的影响还需要进一步研究。采用石墨粉模拟固碳气氛,研究了AISI 430在燃煤锅炉1150 ~ 1350℃高温下的降解情况。碳热还原后,750℃预氧化样品的质量增益约为0.0793 mg⸳cm-2,随着还原温度的升高,质量增益增大。氧化还原后的Fe2O3和Cr7C3的XRD谱线分别被检测到。采用双回路电化学电位动力学再激活(DL-EPR)技术测定样品的灵敏度(%DoS),将预氧化样品加热至1150℃后,样品的灵敏度提高了约30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1