Reviewing Methods for Controlling Spatial Data Quality from Multiple Perspectives

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.23977/geors.2022.050104
Danling Chen
{"title":"Reviewing Methods for Controlling Spatial Data Quality from Multiple Perspectives","authors":"Danling Chen","doi":"10.23977/geors.2022.050104","DOIUrl":null,"url":null,"abstract":": Spatial data is the core and operation object of geographic information system (GIS). The quality of spatial data determines the application of GIS and the effectiveness of decision-making to a great extent. This article introduces two important types of spatial data, vector data and raster data. Then, this paper discusses the uncertainty and sources of errors in spatial data, and discusses the methods of checking and preventing uncertainty and errors from the aspects and processes of digitization, so as to ensure the quality of spatial data. Finally, this paper explores cutting-edge approaches to improving spatial data quality, including the Area preserving method for improved categorical raster resampling, and using hierarchical grid index to detect and correct errors in vector elevation data. By studying effective data quality control methods, the quality of spatial data in GIS can be guaranteed, and the basic guarantee for the wide application and development of geographic information science can be provided.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"7 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23977/geors.2022.050104","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

: Spatial data is the core and operation object of geographic information system (GIS). The quality of spatial data determines the application of GIS and the effectiveness of decision-making to a great extent. This article introduces two important types of spatial data, vector data and raster data. Then, this paper discusses the uncertainty and sources of errors in spatial data, and discusses the methods of checking and preventing uncertainty and errors from the aspects and processes of digitization, so as to ensure the quality of spatial data. Finally, this paper explores cutting-edge approaches to improving spatial data quality, including the Area preserving method for improved categorical raster resampling, and using hierarchical grid index to detect and correct errors in vector elevation data. By studying effective data quality control methods, the quality of spatial data in GIS can be guaranteed, and the basic guarantee for the wide application and development of geographic information science can be provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多视角空间数据质量控制方法综述
空间数据是地理信息系统(GIS)的核心和运行对象。空间数据的质量在很大程度上决定着GIS的应用和决策的有效性。本文介绍了两种重要的空间数据类型:矢量数据和栅格数据。然后,讨论了空间数据的不确定性和误差来源,并从数字化的各个方面和过程探讨了检查和预防不确定性和误差的方法,从而保证空间数据的质量。最后,本文探讨了提高空间数据质量的前沿方法,包括改进分类栅格重采样的区域保留方法,以及使用分层网格索引检测和纠正矢量高程数据的错误。通过研究有效的数据质量控制方法,可以保证GIS空间数据的质量,为地理信息科学的广泛应用和发展提供基本保障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1