IoTRepair: Flexible Fault Handling in Diverse IoT Deployments

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2022-05-09 DOI:10.1145/3532194
Michael Norris, Z. Berkay Celik, P. Venkatesh, Shulin Zhao, P. Mcdaniel, A. Sivasubramaniam, Gang Tan
{"title":"IoTRepair: Flexible Fault Handling in Diverse IoT Deployments","authors":"Michael Norris, Z. Berkay Celik, P. Venkatesh, Shulin Zhao, P. Mcdaniel, A. Sivasubramaniam, Gang Tan","doi":"10.1145/3532194","DOIUrl":null,"url":null,"abstract":"IoT devices can be used to complete a wide array of physical tasks, but due to factors such as low computational resources and distributed physical deployment, they are susceptible to a wide array of faulty behaviors. Many devices deployed in homes, vehicles, industrial sites, and hospitals carry a great risk of damage to property, harm to a person, or breach of security if they behave faultily. We propose a general fault handling system named IoTRepair, which shows promising results for effectiveness with limited latency and power overhead in an IoT environment. IoTRepair dynamically organizes and customizes fault-handling techniques to address the unique problems associated with heterogeneous IoT deployments. We evaluate IoTRepair by creating a physical implementation mirroring a typical home environment to motivate the effectiveness of this system. Our evaluation showed that each of our fault-handling functions could be completed within 100 milliseconds after fault identification, which is a fraction of the time that state-of-the-art fault-identification methods take (measured in minutes). The power overhead is equally small, with the computation and device action consuming less than 30 milliwatts. This evaluation shows that IoTRepair not only can be deployed in a physical system, but offers significant benefits at a low overhead.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3532194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

IoT devices can be used to complete a wide array of physical tasks, but due to factors such as low computational resources and distributed physical deployment, they are susceptible to a wide array of faulty behaviors. Many devices deployed in homes, vehicles, industrial sites, and hospitals carry a great risk of damage to property, harm to a person, or breach of security if they behave faultily. We propose a general fault handling system named IoTRepair, which shows promising results for effectiveness with limited latency and power overhead in an IoT environment. IoTRepair dynamically organizes and customizes fault-handling techniques to address the unique problems associated with heterogeneous IoT deployments. We evaluate IoTRepair by creating a physical implementation mirroring a typical home environment to motivate the effectiveness of this system. Our evaluation showed that each of our fault-handling functions could be completed within 100 milliseconds after fault identification, which is a fraction of the time that state-of-the-art fault-identification methods take (measured in minutes). The power overhead is equally small, with the computation and device action consuming less than 30 milliwatts. This evaluation shows that IoTRepair not only can be deployed in a physical system, but offers significant benefits at a low overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iorepair:灵活处理各种物联网部署中的故障
物联网设备可用于完成各种物理任务,但由于低计算资源和分布式物理部署等因素,它们容易受到各种错误行为的影响。部署在家庭、车辆、工业场所和医院中的许多设备,如果出现故障,可能会造成财产损失、人身伤害或违反安全规定。我们提出了一种名为IoTRepair的通用故障处理系统,该系统在物联网环境中以有限的延迟和功耗开销显示出有希望的效果。IoTRepair动态组织和定制故障处理技术,以解决与异构物联网部署相关的独特问题。我们通过创建一个反映典型家庭环境的物理实现来评估IoTRepair,以激发该系统的有效性。我们的评估表明,我们的每个故障处理功能都可以在故障识别后的100毫秒内完成,这是最先进的故障识别方法所需时间(以分钟为单位)的一小部分。功率开销同样小,计算和设备动作消耗不到30毫瓦。该评估表明,IoTRepair不仅可以部署在物理系统中,而且可以在低开销的情况下提供显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
FLAShadow: A Flash-based Shadow Stack for Low-end Embedded Systems CoSense: Deep Learning Augmented Sensing for Coexistence with Networking in Millimeter-Wave Picocells CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against Multi-step Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1