Lower Ionospheric Turbulence Variations During the Recent Activity of Etna’s Volcano, Sicily, in December 2018

M. Contadakis, D. Arabelos, E. Scordilis
{"title":"Lower Ionospheric Turbulence Variations During the Recent Activity of Etna’s Volcano, Sicily, in December 2018","authors":"M. Contadakis, D. Arabelos, E. Scordilis","doi":"10.12681/bgsg.20517","DOIUrl":null,"url":null,"abstract":"In this paper, we present an investigation on the ionospheric turbulence from TEC observations before and during the recent activity of Etna’s Volcano. Mount Etna is located close to the eastern coast of Sicily. The last eruption of Etna volcano took place on 24 December 2018 while two days later (26 December, 02:19 UTC) an earthquake of M=5.0 occurred ~15 km to the ESE of the volcano, causing damage to the nearby city of Catania. The results of our investigation, on the occasion of the Etna’s Volcanic activity, indicate that the high-frequency limit fo  of the ionospheric turbulence band content, is increasing with time to the volcano eruption while, at the same time, fo isdecreasing with distance from the volcano. We conclude that the LAIC mechanism through acoustic or gravity waves could explain this phenomenology, as it has happened in cases of earthquake activity. Our observations indicate that the effect of volcanic eruption on the band content of the ionospheric turbulence is insignificant at distances greater than 1000km (at the most), a fact that we must consider in our research on Ionospheric turbulence in relation to earthquake precursors research.","PeriodicalId":9519,"journal":{"name":"Bulletin of the Geological Society of Greece","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Geological Society of Greece","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/bgsg.20517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an investigation on the ionospheric turbulence from TEC observations before and during the recent activity of Etna’s Volcano. Mount Etna is located close to the eastern coast of Sicily. The last eruption of Etna volcano took place on 24 December 2018 while two days later (26 December, 02:19 UTC) an earthquake of M=5.0 occurred ~15 km to the ESE of the volcano, causing damage to the nearby city of Catania. The results of our investigation, on the occasion of the Etna’s Volcanic activity, indicate that the high-frequency limit fo  of the ionospheric turbulence band content, is increasing with time to the volcano eruption while, at the same time, fo isdecreasing with distance from the volcano. We conclude that the LAIC mechanism through acoustic or gravity waves could explain this phenomenology, as it has happened in cases of earthquake activity. Our observations indicate that the effect of volcanic eruption on the band content of the ionospheric turbulence is insignificant at distances greater than 1000km (at the most), a fact that we must consider in our research on Ionospheric turbulence in relation to earthquake precursors research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2018年12月西西里岛埃特纳火山近期活动期间电离层低层湍流变化
本文从埃特纳火山活动前和活动期间的TEC观测资料,对电离层湍流进行了研究。埃特纳火山位于西西里岛东海岸附近。埃特纳火山的最后一次喷发发生在2018年12月24日,两天后(12月26日,UTC时间02:19),火山东南方向约15公里处发生了5.0级地震,对附近的卡塔尼亚市造成了破坏。在埃特纳火山活动的背景下,我们的调查结果表明,电离层湍流带含量的高频极限随着火山喷发时间的增加而增加,同时随着距离火山的距离而减少。我们的结论是,通过声波或重力波的LAIC机制可以解释这种现象,因为它发生在地震活动的情况下。我们的观测表明,火山喷发对电离层湍流带含量的影响在距离大于1000km(最多)时是不显著的,这是我们在研究电离层湍流与地震前兆研究的关系时必须考虑的一个事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical and Strategic Metal Resources of Greece Tsunamis versus extreme meteorological waves: Evidence from the 2004 Aegean Sea cyclone in Samos Island Morphometric Analyses of Greek Caves: How Morphology Predicts Cave Origin First occurrence of Pliorhinus cf. megarhinus (Perrissodactyla, Rhinocerotidae) in Greece Investigating the capability of Sentinel-2 and Worldview-3 VNIR satellite data to detect mineralized zones at an igneous intrusion in the Koutala islet (Lavreotiki, Greece) using laboratory mineralogical analysis, reflectance spectroscopy and spectral indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1