Marco Mercuri;Ping Jack Soh;Pouya Mehrjouseresht;Felice Crupi;Dominique Schreurs
{"title":"Biomedical Radar System for Real-Time Contactless Fall Detection and Indoor Localization","authors":"Marco Mercuri;Ping Jack Soh;Pouya Mehrjouseresht;Felice Crupi;Dominique Schreurs","doi":"10.1109/JERM.2023.3278473","DOIUrl":null,"url":null,"abstract":"Fall incidents represent a major public health problem among elderly people. This resulted in a significant increase of the number of investigated systems aiming at detecting falls promptly. In this respect, in this work, a biomedical radar system is proposed for remote real-time fall detection and indoor localization. The system, consisting of a sensor and a base station, combines radar and wireless communication techniques, and uses a data processing technique to distinguish between fall events and normal movements. The classification, based on a Least-Square Support Vector Machine (LS -SVM), combined with the sliding window principle allows to perform fall detection in real-time. Moreover, it is capable to localize the subjects when the fall incident has been detected. The in-vivo validation showed a high success rate in detecting fall events, with a maximum delay of 340 ms. Moreover, a maximum mean absolute errors (MAE) of 3.8 cm and a maximum root-mean-square error (RMSE) of 7.5 cm were reported in measuring the subject's absolute distance.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 4","pages":"303-312"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10136884/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Fall incidents represent a major public health problem among elderly people. This resulted in a significant increase of the number of investigated systems aiming at detecting falls promptly. In this respect, in this work, a biomedical radar system is proposed for remote real-time fall detection and indoor localization. The system, consisting of a sensor and a base station, combines radar and wireless communication techniques, and uses a data processing technique to distinguish between fall events and normal movements. The classification, based on a Least-Square Support Vector Machine (LS -SVM), combined with the sliding window principle allows to perform fall detection in real-time. Moreover, it is capable to localize the subjects when the fall incident has been detected. The in-vivo validation showed a high success rate in detecting fall events, with a maximum delay of 340 ms. Moreover, a maximum mean absolute errors (MAE) of 3.8 cm and a maximum root-mean-square error (RMSE) of 7.5 cm were reported in measuring the subject's absolute distance.