{"title":"Impact of First True Leaf Photosynthetic Efficiency on Peanut Plant Growth under Different Early-Season Temperature Conditions","authors":"Gurpreet Virk, C. Pilon, J. Snider","doi":"10.3146/ps19-8.1","DOIUrl":null,"url":null,"abstract":"\n Selecting planting dates with optimal temperatures for plant growth and development is important for successful crop production. Photosynthetic rates of peanut leaves under adverse environmental conditions have been widely studied; however, characterization of photosynthetic efficiency of first true leaves as well as its contribution to plant growth is not well elucidated. The objectives of this research were to assess the influence of first true leaves of peanut cultivars on plant growth under different temperature conditions during early growth and at the onset of flowering and to identify the photosynthetic components more closely linked with photosynthetic efficiency of the first true leaves. Experiments were conducted with April (early), May (optimum), and June (late) planting dates in 2017 and 2018. Cultivars Georgia-06G, Georgia-14N, and TifNV-High O/L were evaluated. Measurements were taken at three and five wks after planting, early season and the onset of flowering, respectively. Rapid development of first true leaves of peanut plants contributed to whole-plant growth in the early season and at the onset of flowering across the temperature conditions. Net photosynthesis of first true leaves was not impacted by temperature conditions in the early season or at the onset of flowering primarily due to greater activity of non-stomatal components associated with the thylakoid reactions. Whole-plant growth was more considerably associated with first true leaf area development than photosynthetic efficiency of those leaves in peanut plants.","PeriodicalId":19823,"journal":{"name":"Peanut Science","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peanut Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3146/ps19-8.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Selecting planting dates with optimal temperatures for plant growth and development is important for successful crop production. Photosynthetic rates of peanut leaves under adverse environmental conditions have been widely studied; however, characterization of photosynthetic efficiency of first true leaves as well as its contribution to plant growth is not well elucidated. The objectives of this research were to assess the influence of first true leaves of peanut cultivars on plant growth under different temperature conditions during early growth and at the onset of flowering and to identify the photosynthetic components more closely linked with photosynthetic efficiency of the first true leaves. Experiments were conducted with April (early), May (optimum), and June (late) planting dates in 2017 and 2018. Cultivars Georgia-06G, Georgia-14N, and TifNV-High O/L were evaluated. Measurements were taken at three and five wks after planting, early season and the onset of flowering, respectively. Rapid development of first true leaves of peanut plants contributed to whole-plant growth in the early season and at the onset of flowering across the temperature conditions. Net photosynthesis of first true leaves was not impacted by temperature conditions in the early season or at the onset of flowering primarily due to greater activity of non-stomatal components associated with the thylakoid reactions. Whole-plant growth was more considerably associated with first true leaf area development than photosynthetic efficiency of those leaves in peanut plants.