Use of Ultrasound Thermometry to Study Natural Convection in Opaque Nanofluids

K. Wong, B. Bon
{"title":"Use of Ultrasound Thermometry to Study Natural Convection in Opaque Nanofluids","authors":"K. Wong, B. Bon","doi":"10.1520/JAI104320","DOIUrl":null,"url":null,"abstract":"Nanofluids are being evaluated as alternative heat transfer fluids, and thus their behavior during storage or low velocity applications in which natural convection can be significant has to be known and documented. Buoyancy induced flows in rectangular enclosures using nanofluids can be studied experimentally using thermocouples, thermistors, surface heat flux sensors, and ultrasound thermometry. The effects of the mass fraction concentration of nanoparticles, the enclosure aspect ratio, and the inclination have been studied experimentally, but more could be done. The opacity of nanofluids does not permit the use of particle image velocimetry, laser induced fluorescence, or any other means of flow visualization or visual temperature measurement of the local fluid temperature. However, the temperature field can be observed using a non-invasive method such as ultrasound thermometry. The experimental enclosure here was validated using water as the initial fluid; measured values of the local fluid temperature were compared with numerical simulations utilizing commercial software. Nanofluid mass fractions of 10% and 25% were used for comparative purposes to study the effects of concentration on the temperature field. Buoyancy force reversal effects were witnessed in both 10% and 25% concentrations. The nanofluid also prolonged the multicellular effects that occur in buoyancy inversion flows. A Rayleigh number inversion was observed with the 25% mass fraction nanofluid. The multicellular regime transitions to a boundary layer regime at about Ra = 1 × 107 when the aspect ratio is 2.625 and at about Ra = 2 × 108 when the aspect ratio is 1.000 for different concentrations of nanofluid. The observations could be physically explained. The current work confirms that temperature measurements of the flow field can be made to assess convective regimes and flow phenomena that induce significant temperature variations. The use of ultrasound thermometry is successfully demonstrated for opaque nanofluid.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nanofluids are being evaluated as alternative heat transfer fluids, and thus their behavior during storage or low velocity applications in which natural convection can be significant has to be known and documented. Buoyancy induced flows in rectangular enclosures using nanofluids can be studied experimentally using thermocouples, thermistors, surface heat flux sensors, and ultrasound thermometry. The effects of the mass fraction concentration of nanoparticles, the enclosure aspect ratio, and the inclination have been studied experimentally, but more could be done. The opacity of nanofluids does not permit the use of particle image velocimetry, laser induced fluorescence, or any other means of flow visualization or visual temperature measurement of the local fluid temperature. However, the temperature field can be observed using a non-invasive method such as ultrasound thermometry. The experimental enclosure here was validated using water as the initial fluid; measured values of the local fluid temperature were compared with numerical simulations utilizing commercial software. Nanofluid mass fractions of 10% and 25% were used for comparative purposes to study the effects of concentration on the temperature field. Buoyancy force reversal effects were witnessed in both 10% and 25% concentrations. The nanofluid also prolonged the multicellular effects that occur in buoyancy inversion flows. A Rayleigh number inversion was observed with the 25% mass fraction nanofluid. The multicellular regime transitions to a boundary layer regime at about Ra = 1 × 107 when the aspect ratio is 2.625 and at about Ra = 2 × 108 when the aspect ratio is 1.000 for different concentrations of nanofluid. The observations could be physically explained. The current work confirms that temperature measurements of the flow field can be made to assess convective regimes and flow phenomena that induce significant temperature variations. The use of ultrasound thermometry is successfully demonstrated for opaque nanofluid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超声波测温技术研究不透明纳米流体中的自然对流
纳米流体正在被评价为可替代的传热流体,因此,在储存或低速应用(自然对流可能很重要)期间,纳米流体的行为必须被了解和记录。通过热电偶、热敏电阻、表面热流通量传感器和超声波测温,可以对矩形外壳中纳米流体的浮力诱导流动进行实验研究。实验研究了纳米颗粒的质量分数浓度、包封长宽比和倾角的影响,但还需要做更多的研究。纳米流体的不透明性不允许使用粒子图像测速、激光诱导荧光或任何其他流动可视化或局部流体温度的视觉温度测量手段。然而,温度场可以用一种非侵入性的方法来观察,比如超声波测温。这里的实验箱是用水作为初始流体进行验证的;利用商业软件将局部流体温度的实测值与数值模拟结果进行了比较。采用纳米流体质量分数为10%和25%进行对比,研究浓度对温度场的影响。在浓度为10%和25%的情况下,均出现浮力反转效应。纳米流体还延长了浮力反转流动中的多细胞效应。在质量分数为25%的纳米流体中观察到瑞利数反演。当纵横比为2.625时,多细胞状态在Ra = 1 × 107左右转变为边界层状态;当纵横比为1.000时,多细胞状态在Ra = 2 × 108左右转变为边界层状态。这些观察结果可以用物理学来解释。目前的工作证实,流场的温度测量可以用来评估对流状态和引起显著温度变化的流动现象。超声波测温技术成功应用于不透明纳米流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flame Retardant Emissions from Spray Polyurethane Foam Insulation Economic Impact of Improved Service-Life Prediction for Seams in Low-Slope EPDM Roofing The Economics of Residential Fire Sprinklers and the Potential Impact of Recent Code Changes Roller Profile Development for an Axially Loaded, Single Row Spherical Roller Bearing in an Oscillating Application Characterization of Adhesive Joints for Hybrid Steel-Glass Beams by Means of Simplified Small Scale Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1