Support vector regression model with variant tolerance

Jiangyue Wei, Xiaoxia He
{"title":"Support vector regression model with variant tolerance","authors":"Jiangyue Wei, Xiaoxia He","doi":"10.1177/00202940231180620","DOIUrl":null,"url":null,"abstract":"Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有变量容差的支持向量回归模型
支持向量回归(Support Vector Regression, SVR)的研究大多集中在核函数或损失函数上,使用固定半径获得相应的支持向量[公式:见文本]-tube,对数据集具有良好的预测性能。然而,固定半径限制阻碍了根据数据分布特征自适应选择支持向量,影响了基于svr的方法的性能。因此,本研究将一种名为“可变[公式:见文]”的新颖[公式:见文]应用于SVR模型,提出了“可变[公式:见文]-支持向量回归”([公式:见文]-SVR)模型。基于每个位置的数据点稀疏性,模型求解相应位置的不同[公式:见文],从而通过改变[公式:见文]-管的半径来放大或缩小[公式:见文]-管。这样的变量[公式:见文本]-管策略减少了数据集中的噪声和异常值,提高了[公式:见文本]-SVR模型的预测性能。因此,我们提出了一种新的非确定性算法来迭代解决与每个位置相关的复杂优化问题[公式:见文本]。大量的实验结果表明,与基线方法相比,我们的方法在模拟和真实数据上都能提高精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1