{"title":"Support vector regression model with variant tolerance","authors":"Jiangyue Wei, Xiaoxia He","doi":"10.1177/00202940231180620","DOIUrl":null,"url":null,"abstract":"Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.