A Comparison Study of Finding Efficient Methods for Generating Normal Random Numbers

A. Sajib, Syeda Fateha Akter
{"title":"A Comparison Study of Finding Efficient Methods for Generating Normal Random Numbers","authors":"A. Sajib, Syeda Fateha Akter","doi":"10.3329/dujs.v67i2.54579","DOIUrl":null,"url":null,"abstract":"Normal distribution is one of the most commonly used non-uniform distributions in applications involving simulations. Advanced computing facilities make the simulation tasks simple but the challenge is to meet the increasingly stringent requirements on the statistical quality of the generated samples. In this paper, we examine performances of different existing methods available to generate random samples from normal distribution based on statistical quality of the generated samples (randomness and normality) and computational complexities. From the simulation study, it is observed that CDF approximation based method and acceptance-rejection method devised by Rao et al12 and Sigman14 are the fastest and the slowest respectively among all algorithms considered in this paper while generated samples produced by all methods satisfy randomness and normality properties. An application involving simulation from normal distribution is shown by considering a Monte Carlo integration problem. \nDhaka Univ. J. Sci. 67(2): 91-98, 2019 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v67i2.54579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normal distribution is one of the most commonly used non-uniform distributions in applications involving simulations. Advanced computing facilities make the simulation tasks simple but the challenge is to meet the increasingly stringent requirements on the statistical quality of the generated samples. In this paper, we examine performances of different existing methods available to generate random samples from normal distribution based on statistical quality of the generated samples (randomness and normality) and computational complexities. From the simulation study, it is observed that CDF approximation based method and acceptance-rejection method devised by Rao et al12 and Sigman14 are the fastest and the slowest respectively among all algorithms considered in this paper while generated samples produced by all methods satisfy randomness and normality properties. An application involving simulation from normal distribution is shown by considering a Monte Carlo integration problem. Dhaka Univ. J. Sci. 67(2): 91-98, 2019 (July)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找生成正态随机数的有效方法的比较研究
正态分布是模拟应用中最常用的非均匀分布之一。先进的计算设施使模拟任务变得简单,但挑战在于如何满足对生成样本的统计质量日益严格的要求。在本文中,我们根据生成样本的统计质量(随机性和正态性)和计算复杂性,研究了不同现有方法的性能,这些方法可用于从正态分布中生成随机样本。从仿真研究中可以看出,基于CDF近似的方法和由Rao et al12和Sigman14设计的接受-拒绝方法在本文所考虑的所有算法中分别是最快和最慢的,并且所有方法产生的生成样本都满足随机性和正态性。通过考虑蒙特卡罗积分问题,给出了一个涉及正态分布模拟的应用。达卡大学学报(自然科学版),67(2):91- 98,2019 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Covid-19 Pandemic and Pre-pandemic Economic Shocks to Brazil, India, and Mexico: A Forecast Comparison Evaluating the Impact and Recovery New Traveling Wave Solutions to the Simplified Modified Camassa–Holm Equation and the Landau-Ginsburg-Higgs Equation Phytochemical Investigation and Biological Studies of Coffea benghalensis B. Heyne Ex Schult Synthesis and Characterization of Vanadium Doped Hexagonal Rubidium Tungsten Bronze Preparation and Characterization of Porous Carbon Material from Banana Pseudo-Stem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1