A framework of autonomous knowledge transfer for robot navigation task

Weiwei Yu, Shen Wang, K. Madani, Huashan Feng
{"title":"A framework of autonomous knowledge transfer for robot navigation task","authors":"Weiwei Yu, Shen Wang, K. Madani, Huashan Feng","doi":"10.1109/ICAWST.2013.6765408","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework of knowledge transfer used in the robot navigation problem, in order to speedup the learning process when the robot meets new or more complex task. Take the graph of source navigation maps as the template library, Principal Component Analysis method is adopted to match the target graph with source template. Then, the robot recognizes the similar source task. The value-function of the selected source task, which correlates the cumulative rewards with the sensory information corresponding to the generalized distance information to each beacon, is transferred to the target task. With this approach, the robot can choose the most related knowledge from the source tasks and transfer the generalized knowledge to the target navigation task automatically without handed code mapping between tasks. Experimental results demonstrate that the presented transfer method can yield a remarkable speedup for learning process in the robot navigation task.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"43 1","pages":"52-58"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a framework of knowledge transfer used in the robot navigation problem, in order to speedup the learning process when the robot meets new or more complex task. Take the graph of source navigation maps as the template library, Principal Component Analysis method is adopted to match the target graph with source template. Then, the robot recognizes the similar source task. The value-function of the selected source task, which correlates the cumulative rewards with the sensory information corresponding to the generalized distance information to each beacon, is transferred to the target task. With this approach, the robot can choose the most related knowledge from the source tasks and transfer the generalized knowledge to the target navigation task automatically without handed code mapping between tasks. Experimental results demonstrate that the presented transfer method can yield a remarkable speedup for learning process in the robot navigation task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向机器人导航任务的自主知识转移框架
本文提出了一种用于机器人导航问题的知识迁移框架,以加快机器人在遇到新的或更复杂的任务时的学习过程。以源导航图为模板库,采用主成分分析法对目标图与源模板进行匹配。然后,机器人识别相似的源任务。所选源任务的值函数将累积奖励与每个信标广义距离信息对应的感官信息相关联,并传递给目标任务。利用该方法,机器人可以从源任务中选择最相关的知识,并自动将泛化的知识传递给目标导航任务,而无需在任务之间手工进行代码映射。实验结果表明,所提出的迁移方法可以显著加快机器人导航任务的学习速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1