{"title":"Learning Condition-Dependent Dynamical PPI Networks from Conflict-Sensitive Phosphorylation Dynamics","authors":"Qiong Cheng, M. Ogihara, Vineet K Gupta","doi":"10.1109/BIBM.2011.127","DOIUrl":null,"url":null,"abstract":"An important issue in protein-protein interaction network studies is the identification of interaction dynamics. Two factors contribute to the dynamics. One, not all proteins may be expressed in a given cell, and two, competition may exist among multiple proteins for a particular protein domain. Taking into account these two factors, we propose a novel approach to predict protein-protein interaction network dynamics by learning from conflict-sensitive phosphorylation dynamics. We built a training model from conflict-sensitive phosphorylation dynamics. In this model, each node is not an individual protein but a protein-protein pair and is labeled with terms representing conditions in which the interaction should be observed. We mapped the protein pairs in a vector space, built hyper-edges over the interaction nodes, and developed rank-like SVM with Laplacian regularizers for PPI network dynamics prediction. We also employed the standard F1 measure for evaluating the effectiveness of classification results.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"48 1","pages":"309-312"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An important issue in protein-protein interaction network studies is the identification of interaction dynamics. Two factors contribute to the dynamics. One, not all proteins may be expressed in a given cell, and two, competition may exist among multiple proteins for a particular protein domain. Taking into account these two factors, we propose a novel approach to predict protein-protein interaction network dynamics by learning from conflict-sensitive phosphorylation dynamics. We built a training model from conflict-sensitive phosphorylation dynamics. In this model, each node is not an individual protein but a protein-protein pair and is labeled with terms representing conditions in which the interaction should be observed. We mapped the protein pairs in a vector space, built hyper-edges over the interaction nodes, and developed rank-like SVM with Laplacian regularizers for PPI network dynamics prediction. We also employed the standard F1 measure for evaluating the effectiveness of classification results.