Patrizia Di Campli San Vito, S. Brewster, F. Pollick, Stuart White, L. Skrypchuk, A. Mouzakitis
{"title":"Thermal Feedback for Simulated Lane Change Scenarios","authors":"Patrizia Di Campli San Vito, S. Brewster, F. Pollick, Stuart White, L. Skrypchuk, A. Mouzakitis","doi":"10.4018/IJMHCI.2019040103","DOIUrl":null,"url":null,"abstract":"Most research into haptic feedback for in-car applications has used vibrotactile feedback. In this article, two simulator studies investigate novel thermal feedback during driving for a lane change task. The distraction and time differences of audio and thermal feedback were investigated in the first, with results showing that thermal feedback does not increase lane deviation, but the time to completed lane change is 1.82s longer in the thermal than the audio condition. The second experiment explored the difference in variable changes of the thermal stimuli on the recognition rate and false positive recognition at the return to the neutral temperature. Variable alterations can have different effects on these tasks and are not mirrored for the directions of temperature change. This suggests that the design of thermal stimuli is highly dependent on what result should be maximized: recognition rate or minimal additional changes at the return to the neutral temperature.","PeriodicalId":43100,"journal":{"name":"International Journal of Mobile Human Computer Interaction","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Human Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMHCI.2019040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 3
Abstract
Most research into haptic feedback for in-car applications has used vibrotactile feedback. In this article, two simulator studies investigate novel thermal feedback during driving for a lane change task. The distraction and time differences of audio and thermal feedback were investigated in the first, with results showing that thermal feedback does not increase lane deviation, but the time to completed lane change is 1.82s longer in the thermal than the audio condition. The second experiment explored the difference in variable changes of the thermal stimuli on the recognition rate and false positive recognition at the return to the neutral temperature. Variable alterations can have different effects on these tasks and are not mirrored for the directions of temperature change. This suggests that the design of thermal stimuli is highly dependent on what result should be maximized: recognition rate or minimal additional changes at the return to the neutral temperature.