A Comparison of Effects of Ambient Pressure on the Atomization Performance of Soybean Oil Methyl Ester and Dimethyl Ether Sprays

Hyuck Kim, Sung-Tae Park, M. Chon, C. S. Lee
{"title":"A Comparison of Effects of Ambient Pressure on the Atomization Performance of Soybean Oil Methyl Ester and Dimethyl Ether Sprays","authors":"Hyuck Kim, Sung-Tae Park, M. Chon, C. S. Lee","doi":"10.2516/OGST/2009069","DOIUrl":null,"url":null,"abstract":"The purpose of this study is the experimental investigation of Soybean oil Methyl Ester (SME) and DiMethyl Ether (DME) spray characteristics injected through the common-rail injection system under various ambient pressures. A high pressure chamber that can be pressurized up to 4 MPa was utilized for a change of ambient pressure. In order to compare the spray development and atomization characteristics, the images of SME and DME were obtained by using a high speed camera with two metal halide lamps under various ambient pressures in the spray chamber. From these spray images, the spray characteristics such as the spray penetration from the nozzle tip, maximum radial distance, and spray diameter were measured and analyzed. In addition, the Sauter Mean Diameter (SMD) of two fuels under ambient pressure was analyzed using the droplet measuring system. It was revealed that the axial distance of spray from the nozzle tip of the SME spray is longer than that of DME spray under same injection condition. The axial penetration, maximum radial distance, and spray diameter decreased when the ambient pressure in the chamber increased. As the ambient pressure increased, the SMD decreased and the DME spray showed a superior atomization performance compared to the SME spray.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The purpose of this study is the experimental investigation of Soybean oil Methyl Ester (SME) and DiMethyl Ether (DME) spray characteristics injected through the common-rail injection system under various ambient pressures. A high pressure chamber that can be pressurized up to 4 MPa was utilized for a change of ambient pressure. In order to compare the spray development and atomization characteristics, the images of SME and DME were obtained by using a high speed camera with two metal halide lamps under various ambient pressures in the spray chamber. From these spray images, the spray characteristics such as the spray penetration from the nozzle tip, maximum radial distance, and spray diameter were measured and analyzed. In addition, the Sauter Mean Diameter (SMD) of two fuels under ambient pressure was analyzed using the droplet measuring system. It was revealed that the axial distance of spray from the nozzle tip of the SME spray is longer than that of DME spray under same injection condition. The axial penetration, maximum radial distance, and spray diameter decreased when the ambient pressure in the chamber increased. As the ambient pressure increased, the SMD decreased and the DME spray showed a superior atomization performance compared to the SME spray.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境压力对大豆油甲酯和二甲醚喷雾雾化性能影响的比较
实验研究了不同环境压力下,通过共轨喷射系统喷射大豆油甲酯(SME)和二甲醚(DME)的喷雾特性。高压室可加压至4mpa用于环境压力的变化。为了比较SME和DME在不同环境压力下的喷雾发展和雾化特性,利用高速相机和两个金属卤化物灯在不同环境压力下获得了SME和DME的图像。从这些喷射图像中,测量并分析了喷嘴尖端的喷射穿透、最大径向距离和喷射直径等喷射特性。此外,利用液滴测量系统分析了两种燃料在环境压力下的Sauter平均直径(SMD)。结果表明,在相同的喷射条件下,SME喷嘴的轴向喷射距离比DME喷嘴的轴向喷射距离长。随着室内环境压力的增大,轴向侵彻量、最大径向距离和喷雾直径均减小。随着环境压力的增加,SMD减小,DME喷雾的雾化性能优于SME喷雾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of geomechanical effects during SAGD process in a meander belt Flow Simulation Using Local Grid Refinements to Model Laminated Reservoirs Correlating Stochastically Distributed Reservoir Heterogeneities with Steam-Assisted Gravity Drainage Production Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1