Semantic Aware Data Augmentation for Cell Nuclei Microscopical Images with Artificial Neural Networks

Alireza Naghizadeh, Hongye Xu, Mohab Mohamed, Dimitris N. Metaxas, Dongfang Liu
{"title":"Semantic Aware Data Augmentation for Cell Nuclei Microscopical Images with Artificial Neural Networks","authors":"Alireza Naghizadeh, Hongye Xu, Mohab Mohamed, Dimitris N. Metaxas, Dongfang Liu","doi":"10.1109/ICCV48922.2021.00392","DOIUrl":null,"url":null,"abstract":"There exists many powerful architectures for object detection and semantic segmentation of both biomedical and natural images. However, a difficulty arises in the ability to create training datasets that are large and well-varied. The importance of this subject is nested in the amount of training data that artificial neural networks need to accurately identify and segment objects in images and the infeasibility of acquiring a sufficient dataset within the biomedical field. This paper introduces a new data augmentation method that generates artificial cell nuclei microscopical images along with their correct semantic segmentation labels. Data augmentation provides a step toward accessing higher generalization capabilities of artificial neural networks. An initial set of segmentation objects is used with Greedy AutoAugment to find the strongest performing augmentation policies. The found policies and the initial set of segmentation objects are then used in the creation of the final artificial images. When comparing the state-of-the-art data augmentation methods with the proposed method, the proposed method is shown to consistently outperform current solutions in the generation of nuclei microscopical images.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"31 1","pages":"3932-3941"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

There exists many powerful architectures for object detection and semantic segmentation of both biomedical and natural images. However, a difficulty arises in the ability to create training datasets that are large and well-varied. The importance of this subject is nested in the amount of training data that artificial neural networks need to accurately identify and segment objects in images and the infeasibility of acquiring a sufficient dataset within the biomedical field. This paper introduces a new data augmentation method that generates artificial cell nuclei microscopical images along with their correct semantic segmentation labels. Data augmentation provides a step toward accessing higher generalization capabilities of artificial neural networks. An initial set of segmentation objects is used with Greedy AutoAugment to find the strongest performing augmentation policies. The found policies and the initial set of segmentation objects are then used in the creation of the final artificial images. When comparing the state-of-the-art data augmentation methods with the proposed method, the proposed method is shown to consistently outperform current solutions in the generation of nuclei microscopical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的细胞核显微图像语义感知数据增强
生物医学和自然图像的目标检测和语义分割已经有了许多强大的体系结构。然而,创建大型且变化良好的训练数据集的能力出现了困难。该主题的重要性嵌套在人工神经网络需要准确识别和分割图像中的物体所需的训练数据量以及在生物医学领域获取足够数据集的不可行性中。本文介绍了一种新的数据增强方法,即生成具有正确语义分割标签的人工细胞核显微图像。数据增强为获得人工神经网络的更高泛化能力提供了一步。一组初始分割对象与Greedy AutoAugment一起使用,以找到性能最强的增强策略。然后将找到的策略和初始分割对象集用于创建最终的人工图像。当比较最先进的数据增强方法与所提出的方法时,所提出的方法在生成核显微图像方面始终优于当前的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1