{"title":"INFLUENCES OF NONLINEAR SUSPENSION ON THE BUS’S ROLL STABILITY BY A LATERAL DYNAMIC 4-DOF MODEL","authors":"Tran Huu Nhan, Pham Ngoc Dai","doi":"10.5937/jaes0-42738","DOIUrl":null,"url":null,"abstract":"The influences of nonlinear suspension system with air spring and nonlinear asymmetrical (NA) absorber in comparison with a linear suspension is analyzed based on a lateral dynamic four degrees of freedom (4-DOF) model. The lateral dynamic model considers the effects of anti-roll bars, the roll center position, and the transient excitation of the road on the roll stability performance. The characteristics of the suspension system, the position of the roll center, the road excitation load all play very important roles in determining the roll stability of the vehicle. The maximum dynamic roll angle with nonlinear suspension is always smaller than that with linear suspension. The maximum dynamic rollover stability index is strongly dependent on the velocity and about 27% on average lower than that of linear suspension in the whole velocity domain, subjected under road excitation. However, the maximum of absolute acceleration is always larger with the nonlinear suspension system.","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-42738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The influences of nonlinear suspension system with air spring and nonlinear asymmetrical (NA) absorber in comparison with a linear suspension is analyzed based on a lateral dynamic four degrees of freedom (4-DOF) model. The lateral dynamic model considers the effects of anti-roll bars, the roll center position, and the transient excitation of the road on the roll stability performance. The characteristics of the suspension system, the position of the roll center, the road excitation load all play very important roles in determining the roll stability of the vehicle. The maximum dynamic roll angle with nonlinear suspension is always smaller than that with linear suspension. The maximum dynamic rollover stability index is strongly dependent on the velocity and about 27% on average lower than that of linear suspension in the whole velocity domain, subjected under road excitation. However, the maximum of absolute acceleration is always larger with the nonlinear suspension system.
期刊介绍:
Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.