Study of safe operating area and improvement for power management integrated circuit

Sarah Zhou, Y. Song, Kary Chien, Canny Chen
{"title":"Study of safe operating area and improvement for power management integrated circuit","authors":"Sarah Zhou, Y. Song, Kary Chien, Canny Chen","doi":"10.1109/CSTIC.2017.7919833","DOIUrl":null,"url":null,"abstract":"LDMOS (Lateral Double-diffused Metal Oxide Semiconductor) is widely used to smart power management IC, which can be attributed to its high operation voltage and high current driving capability. Furthermore, LDMOS is compatible with conventional CMOS processes. It will be much easier for IC foundries to make it by existing process flows. Operating at both a high drain voltage and a high current, LDMOS is more sensitive to hot carrier degradation than the devices with low operation voltages [1]. Thus, the LDMOS HC-SOA (Hot Carrier Safe Operating Area) is a major reliability concern and requires more attentions. In this paper, the HC-SOA's of conventional core and IO MOS are also illustrated to show different failure mechanisms and we focus on the detailed HC-SOA test method in practice. Additionally, we study the SOA contours for different cores, IO, NPMOS and LDMOS. Finally, we discuss the HC-SOA extension methods for LDMOS.","PeriodicalId":6846,"journal":{"name":"2017 China Semiconductor Technology International Conference (CSTIC)","volume":"6 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC.2017.7919833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

LDMOS (Lateral Double-diffused Metal Oxide Semiconductor) is widely used to smart power management IC, which can be attributed to its high operation voltage and high current driving capability. Furthermore, LDMOS is compatible with conventional CMOS processes. It will be much easier for IC foundries to make it by existing process flows. Operating at both a high drain voltage and a high current, LDMOS is more sensitive to hot carrier degradation than the devices with low operation voltages [1]. Thus, the LDMOS HC-SOA (Hot Carrier Safe Operating Area) is a major reliability concern and requires more attentions. In this paper, the HC-SOA's of conventional core and IO MOS are also illustrated to show different failure mechanisms and we focus on the detailed HC-SOA test method in practice. Additionally, we study the SOA contours for different cores, IO, NPMOS and LDMOS. Finally, we discuss the HC-SOA extension methods for LDMOS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电源管理集成电路安全工作区域的研究与改进
LDMOS (Lateral double - diffusion Metal Oxide Semiconductor,横向双扩散金属氧化物半导体)具有高工作电压和高电流驱动能力,广泛应用于智能电源管理集成电路中。此外,LDMOS与传统CMOS工艺兼容。对于集成电路代工厂来说,通过现有的工艺流程来制造它要容易得多。在高漏极电压和大电流下工作,LDMOS比低工作电压器件对热载流子退化更敏感[1]。因此,LDMOS HC-SOA(热载波安全操作区域)是一个主要的可靠性问题,需要更多的关注。本文还以传统核心和IO MOS的HC-SOA为例,展示了不同的失效机制,并重点介绍了实践中详细的HC-SOA测试方法。此外,我们还研究了不同核心、IO、NPMOS和LDMOS的SOA轮廓。最后,讨论了面向LDMOS的HC-SOA扩展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wafer size MOS2 with few monolayer synthesized by H2S sulfurization A fast and low-cost TSV/TGV filling method Finger print sensor molding thickness none destructive measurement with Terahertz technology Research of SMO process to improve the imaging capability of lithography system for 28nm node and beyond The study on the moldability and reliability of epoxy molding compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1