Qian Zheng, Jinnan Chen, Zhangchi Lu, Boxin Shi, Xudong Jiang, Kim-Hui Yap, Ling-yu Duan, A. Kot
{"title":"What Does Plate Glass Reveal About Camera Calibration?","authors":"Qian Zheng, Jinnan Chen, Zhangchi Lu, Boxin Shi, Xudong Jiang, Kim-Hui Yap, Ling-yu Duan, A. Kot","doi":"10.1109/cvpr42600.2020.00309","DOIUrl":null,"url":null,"abstract":"This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"254 1","pages":"3019-3029"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.