Claire Bourlieu-Lacanal, A. Deglaire, S. D. Oliveira, O. Ménard, Y. Gouar, F. Carrière, D. Dupont
{"title":"Towards infant formula biomimetic of human milk structure and digestive behaviour","authors":"Claire Bourlieu-Lacanal, A. Deglaire, S. D. Oliveira, O. Ménard, Y. Gouar, F. Carrière, D. Dupont","doi":"10.1051/OCL/2017010","DOIUrl":null,"url":null,"abstract":"Lipids of human milk or infant formula convey most of the energy necessary to support the newborn growth. Until recently, infant formula chemical composition had been optimized but not their structure. And yet, more and more proofs of evidence have shown that lipids structure in human milk modulates digestion kinetics and is involved in metabolic programming. Indeed there is a striking difference of structure between human milk which is an emulsion based on dispersed milk fat globules (4 μm) secreted by the mammary gland and submicronic neoformed lipid droplets (0.5 μm) found in infant formula. These droplets result from a series of operation units. This difference of structure modifies digestion kinetics and emulsion disintegration in the intestinal tract of the newborn. This difference persists along gastric phase which is mainly dominated by acid and enzyme-induced aggregation. Lipid droplets size is thus the key parameter to control gastric lipolysis and emptying and intestinal lipolysis. This parameter also controls proteolysis since adsorbed proteins are more rapidly hydrolyzed than when in solution. In animal models, these differences of lipid structure would also impact digestive and immune systems' maturation and microbiota. Lipid structure during neonatal period would also be involved in the early programming of adipose tissues and metabolism. The supplementation of infant formulas with bovine milk fractions (milk fat globule membrane extracts, triacylglycerol) or recent development of large droplets infant formula, along with new fields of innovation in neonatal nutrition, are here reviewed.","PeriodicalId":46801,"journal":{"name":"OCL-Oilseeds and Fats Crops and Lipids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCL-Oilseeds and Fats Crops and Lipids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/OCL/2017010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 29
Abstract
Lipids of human milk or infant formula convey most of the energy necessary to support the newborn growth. Until recently, infant formula chemical composition had been optimized but not their structure. And yet, more and more proofs of evidence have shown that lipids structure in human milk modulates digestion kinetics and is involved in metabolic programming. Indeed there is a striking difference of structure between human milk which is an emulsion based on dispersed milk fat globules (4 μm) secreted by the mammary gland and submicronic neoformed lipid droplets (0.5 μm) found in infant formula. These droplets result from a series of operation units. This difference of structure modifies digestion kinetics and emulsion disintegration in the intestinal tract of the newborn. This difference persists along gastric phase which is mainly dominated by acid and enzyme-induced aggregation. Lipid droplets size is thus the key parameter to control gastric lipolysis and emptying and intestinal lipolysis. This parameter also controls proteolysis since adsorbed proteins are more rapidly hydrolyzed than when in solution. In animal models, these differences of lipid structure would also impact digestive and immune systems' maturation and microbiota. Lipid structure during neonatal period would also be involved in the early programming of adipose tissues and metabolism. The supplementation of infant formulas with bovine milk fractions (milk fat globule membrane extracts, triacylglycerol) or recent development of large droplets infant formula, along with new fields of innovation in neonatal nutrition, are here reviewed.
期刊介绍:
OCL-Oilseeds and fats, Crops and Lipids is a peer-reviewed full Open-Access scientific journal devoted to fats, lipids and oil- and protein-crops. OCL covers the entire sector. The research papers and reviews published address a range of topical matters in agronomy, plant biology, biochemistry, analytical chemistry, lipid chemistry, as well as transversal research themes such as nutrition, the health-quality-food safety nexus, innovation and industrial processes, the environment and sustainable development, economics and social development. A particular feature of OCL is the inclusion of special thematic sections focusing on a topical subject among the Journal''s core domains. Invited contributors to these thematic sections are chosen with care in order to ensure the expression of a genuine cross-section of interests and expertise.