{"title":"Performance Analysis of Heterogeneous Systems Ieee 802.11 and Ieee 802.16 Using Spectrum Sharing Mechanism","authors":"R. H. Adekar, A. K. Kureshi","doi":"10.4028/www.scientific.net/AEF.44.127","DOIUrl":null,"url":null,"abstract":"After the advent of cellular standards for mobile wireless voice telephony and data transfer, IEEE 802.11 and IEEE 802.16 standards evolved for wireless broadband data transfer. The IEEE 802.11 replaced the wired LAN and IEEE 802.16 was to wireless point-to-point provide broadband data transfer. IEEE 802.11 operates in 2.4 GHz and 5 GHz bands whereas IEEE 802.11, which was initially designed to operate on a licensed band, later switched to a 2-11 GHz band. However, both these standards used a 5 GHz unlicensed band for transmission causing the possible overlap of channels. The designed protocols fairly allow the sharing on an ad-hoc basis. IEEE 802.11 operated in distributed coordination mode using Distributed Coordination Function (DCF) and point coordinated mode using a dedicated coordinator node called Point Coordination Function (PCF). However, DCF mode allows spectrum sharing for multiple users. Both standards were not designed for coexistence and thereby they may cause interference to each other, degrading their performance. Mechanisms can be designed at various layers such as MAC or PHY to enable the coexistence with desired QoS. In this paper, a performance analysis of the impact of possible interference between IEEE 802.11 and IEEE 802.16 devices is presented. Therefore, this paper presents the approaches for allowing a reliable operation between IEEE 802.16 and IEEE 802.11 when both are sharing unlicensed spectrum 5GHz. In this paper, we propose advancements to the MAC of IEEE 802.16 Base Station (BS) where IEEE 802.11 frame transmissions are not required by an IEEE 802.16 system. Here, Co-existence between IEEE 802.11 and IEEE 802.16 is permitted without any exchange of data between both standards, and also it provides quality of service for both systems operating at unlicensed spectrum 5GHz.","PeriodicalId":7184,"journal":{"name":"Advanced Engineering Forum","volume":"59 1","pages":"127 - 135"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/AEF.44.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
After the advent of cellular standards for mobile wireless voice telephony and data transfer, IEEE 802.11 and IEEE 802.16 standards evolved for wireless broadband data transfer. The IEEE 802.11 replaced the wired LAN and IEEE 802.16 was to wireless point-to-point provide broadband data transfer. IEEE 802.11 operates in 2.4 GHz and 5 GHz bands whereas IEEE 802.11, which was initially designed to operate on a licensed band, later switched to a 2-11 GHz band. However, both these standards used a 5 GHz unlicensed band for transmission causing the possible overlap of channels. The designed protocols fairly allow the sharing on an ad-hoc basis. IEEE 802.11 operated in distributed coordination mode using Distributed Coordination Function (DCF) and point coordinated mode using a dedicated coordinator node called Point Coordination Function (PCF). However, DCF mode allows spectrum sharing for multiple users. Both standards were not designed for coexistence and thereby they may cause interference to each other, degrading their performance. Mechanisms can be designed at various layers such as MAC or PHY to enable the coexistence with desired QoS. In this paper, a performance analysis of the impact of possible interference between IEEE 802.11 and IEEE 802.16 devices is presented. Therefore, this paper presents the approaches for allowing a reliable operation between IEEE 802.16 and IEEE 802.11 when both are sharing unlicensed spectrum 5GHz. In this paper, we propose advancements to the MAC of IEEE 802.16 Base Station (BS) where IEEE 802.11 frame transmissions are not required by an IEEE 802.16 system. Here, Co-existence between IEEE 802.11 and IEEE 802.16 is permitted without any exchange of data between both standards, and also it provides quality of service for both systems operating at unlicensed spectrum 5GHz.