Analysis of non-reversible Markov chains via similarity orbits

Michael C. H. Choi, P. Patie
{"title":"Analysis of non-reversible Markov chains via similarity orbits","authors":"Michael C. H. Choi, P. Patie","doi":"10.1017/S0963548320000024","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a normal transition kernel, such as that of birth–death chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the similarity orbit of a birth–death chain. As by-products, we obtain a spectral representation in terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the convergence rate, separation cutoff and L2-cutoff of this class of non-reversible Markov chains. We also look into the problem of estimating the integral functionals from discrete observations for this class. In the last part of this paper we investigate a particular similarity orbit of reversible Markov kernels, which we call the pure birth orbit, and analyse various possibly non-reversible variants of classical birth–death processes in this orbit.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract In this paper we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a normal transition kernel, such as that of birth–death chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the similarity orbit of a birth–death chain. As by-products, we obtain a spectral representation in terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the convergence rate, separation cutoff and L2-cutoff of this class of non-reversible Markov chains. We also look into the problem of estimating the integral functionals from discrete observations for this class. In the last part of this paper we investigate a particular similarity orbit of reversible Markov kernels, which we call the pure birth orbit, and analyse various possibly non-reversible variants of classical birth–death processes in this orbit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似轨道的不可逆马尔可夫链分析
摘要本文从相似轨道的角度深入分析了不可数状态空间上的不可逆马尔可夫链。特别地,我们研究了一类转移核在正常转移核相似轨道上的马尔可夫链,如生-死链或可逆马尔可夫链。我们首先确定了马尔可夫链属于生灭链相似轨道的一组充分条件。作为副产物,我们得到了Dunford意义上恒等的非自伴随分辨率的谱表示[21],并详细分析了这类不可逆马尔可夫链的收敛速率、分离截止和l2截止。我们也研究了从离散观测中估计积分泛函的问题。在本文的最后一部分,我们研究了可逆马尔可夫核的一种特殊的相似轨道,我们称之为纯出生轨道,并分析了该轨道上经典出生-死亡过程的各种可能的不可逆变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new formula for the determinant and bounds on its tensor and Waring ranks On the Ramsey numbers of daisies I On the Ramsey numbers of daisies II List packing number of bounded degree graphs Counting spanning subgraphs in dense hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1