Inferring Gene Regulatory Networks by Machine Learning Methods

J. Supper, H. Fröhlich, C. Spieth, Andreas Dräger, A. Zell
{"title":"Inferring Gene Regulatory Networks by Machine Learning Methods","authors":"J. Supper, H. Fröhlich, C. Spieth, Andreas Dräger, A. Zell","doi":"10.1142/9781860947995_0027","DOIUrl":null,"url":null,"abstract":"The ability to measure the transcriptional response after a stimulus has drawn much attention to the underlying gene regulatory networks. Several machine learning related methods, such as Bayesian networks and decision trees, have been proposed to deal with this difficult problem, but rarely a systematic comparison between different algorithms has been performed. In this work, we critically evaluate the application of multiple linear regression, SVMs, decision trees and Bayesian networks to reconstruct the budding yeast cell cycle network. The performance of these methods is assessed by comparing the topology of the reconstructed models to a validation network. This validation network is defined a priori and each interaction is specified by at least one publication. We also investigate the quality of the network reconstruction if a varying amount of gene regulatory dependencies is provided a priori.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"28 1","pages":"247-256"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The ability to measure the transcriptional response after a stimulus has drawn much attention to the underlying gene regulatory networks. Several machine learning related methods, such as Bayesian networks and decision trees, have been proposed to deal with this difficult problem, but rarely a systematic comparison between different algorithms has been performed. In this work, we critically evaluate the application of multiple linear regression, SVMs, decision trees and Bayesian networks to reconstruct the budding yeast cell cycle network. The performance of these methods is assessed by comparing the topology of the reconstructed models to a validation network. This validation network is defined a priori and each interaction is specified by at least one publication. We also investigate the quality of the network reconstruction if a varying amount of gene regulatory dependencies is provided a priori.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习方法推断基因调控网络
在刺激后测量转录反应的能力引起了人们对潜在基因调控网络的关注。一些机器学习相关的方法,如贝叶斯网络和决策树,已经被提出来处理这个难题,但很少有不同算法之间的系统比较被执行。在这项工作中,我们批判性地评估了多元线性回归、支持向量机、决策树和贝叶斯网络在重建芽殖酵母细胞周期网络中的应用。通过将重建模型的拓扑结构与验证网络进行比较,评估了这些方法的性能。此验证网络是先验定义的,并且每个交互由至少一个发布指定。我们还研究了网络重建的质量,如果不同数量的基因调控依赖是先验的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1