A blind recovery algorithm for spectrum-sparse signals sub-Nyquist sampling

J. Gai, Ziquan Tong, Shuang Cheng, Junjie Wang, Xu Liu
{"title":"A blind recovery algorithm for spectrum-sparse signals sub-Nyquist sampling","authors":"J. Gai, Ziquan Tong, Shuang Cheng, Junjie Wang, Xu Liu","doi":"10.1109/IFOST.2011.6021131","DOIUrl":null,"url":null,"abstract":"Wideband analog signals push contemporary analog- to-digital conversion systems to their performance limits. The recent development of compressive sensing theory enables direct analog-to-information conversion of sparse (or compressible) signals at sub-Nyquist rate. In this paper, we implement spectrum-sparse signals sub-Nyquist sampling by use of Modulated Wide Converter (MWC). To overcome the drawback of requiring exact sparsity of the existing recovery algorithm, we introduce the Sparsity Adaptive Matching Pursuit (SAMP) method into reconstruction stage to search the support set of unknown signal vectors blindly. The numerical experiments demonstrate that the MWC system with the proposed recovery algorithm can implement spectrum-sparse signals sub-Nyqiust sampling and perfect reconstruction under the condition of not knowing exact sparsity.","PeriodicalId":20466,"journal":{"name":"Proceedings of 2011 6th International Forum on Strategic Technology","volume":"257 1","pages":"754-757"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 6th International Forum on Strategic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFOST.2011.6021131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wideband analog signals push contemporary analog- to-digital conversion systems to their performance limits. The recent development of compressive sensing theory enables direct analog-to-information conversion of sparse (or compressible) signals at sub-Nyquist rate. In this paper, we implement spectrum-sparse signals sub-Nyquist sampling by use of Modulated Wide Converter (MWC). To overcome the drawback of requiring exact sparsity of the existing recovery algorithm, we introduce the Sparsity Adaptive Matching Pursuit (SAMP) method into reconstruction stage to search the support set of unknown signal vectors blindly. The numerical experiments demonstrate that the MWC system with the proposed recovery algorithm can implement spectrum-sparse signals sub-Nyqiust sampling and perfect reconstruction under the condition of not knowing exact sparsity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
频谱稀疏信号亚奈奎斯特采样的盲恢复算法
宽带模拟信号将当代模拟数字转换系统推向其性能极限。压缩感知理论的最新发展使稀疏(或可压缩)信号以亚奈奎斯特速率直接模拟到信息的转换成为可能。本文利用调制宽变换器(MWC)实现了频谱稀疏信号的亚奈奎斯特采样。为克服现有恢复算法要求精确稀疏性的缺点,在重建阶段引入稀疏自适应匹配追踪(SAMP)方法,对未知信号向量的支持集进行盲目搜索。数值实验表明,采用该恢复算法的MWC系统可以在不知道精确稀疏度的情况下实现频谱稀疏信号的亚nyqiust采样和完美重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack-healing behavior of Al2O3/SiC composite Characterization of nanopowders produced by electrical explosion of titanium wires Design of fuzzy logic controller for two-wheeled self-balancing robot The design of the network video terminals based on embedded QT Theoretical calculation and numerical simulation of spherical lung cancer cells' refractive index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1