Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study

Michael S. Elioff, J. Hoy, J. Bumpus
{"title":"Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study","authors":"Michael S. Elioff, J. Hoy, J. Bumpus","doi":"10.1155/2016/5082084","DOIUrl":null,"url":null,"abstract":"Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation () values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5082084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation () values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45) of the values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT) coupled with an atom and group contribution method in which 51% (23 of 45) of the values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45) and 64% (23 of 36) of the values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1) with regard to their ability to accurately calculate . Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含能化合物生成热值计算的比较研究
生成热是评价含能化合物性能的几个重要参数之一。我们评估了六种不同的方法准确计算45种含氮含能化合物的气相形成热()值的能力。密度函数理论与等地方程或其他平衡方程的使用相结合,得出的计算结果中,82%(45个中的37个)的值在最新推荐的实验/参考值的±2.0 kcal/mol范围内。这与使用密度泛函理论(DFT)与原子和基团贡献方法相结合的过程进行了比较,其中51%(45个中的23个)的值在这些值的±2.0 kcal/mol范围内。T1程序和Benson的群可加性方法的结果分别是51%(23 / 45)和64%(23 / 36)的值在±2.0 kcal/mol范围内。我们还比较了两种相对较新的半经验方法(PM7和RM1)关于他们准确计算的能力。尽管半经验方法不断改进,但它们被发现比本调查中使用的测试集的其他方法更不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation Enhancement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Porphyrin Precursor Organic Compounds Based on (E)-N-Aryl-2-ethene-sulfonamide as Microtubule Targeted Agents in Prostate Cancer: QSAR Study Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition Synthesis and Characterization of System In(O,OH)S/i-ZnO/n+-ZnO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1