P. Kumbhar, V. Khade, Varsha Khadake, Pradnya Marale, A. Manjappa, S. Nadaf, V. Kumbar, D. Bhagwat, J. Disouza
{"title":"Ifosfamide-Loaded Cubosomes: An Approach to Potentiate Cytotoxicity against MDA-MB-231 Breast Cancer Cells","authors":"P. Kumbhar, V. Khade, Varsha Khadake, Pradnya Marale, A. Manjappa, S. Nadaf, V. Kumbar, D. Bhagwat, J. Disouza","doi":"10.55262/fabadeczacilik.1145208","DOIUrl":null,"url":null,"abstract":"Background: Ifosfamide (IFS) is proved efficacious against breast cancer, an enormously diagnosed cancer across the globe. However, the clinical efficacy of IFS is limited owing to its hydrophilicity, less stability, and dose-dependent toxicities. Therefore, the primary goal of the present research was to develop IFS-loaded cubosomes with improved anticancer efficacy and reduced dose-dependent toxicities. \nMethods: The IFS-cubosomes were optimized using a 32 factorial design based on IFS content and zeta potential. The optimized cubosomal dispersion was further assessed for particle size, in vitro IFS release, haemolysis, cytotoxicity, cellular uptake and physical stability. \nResults: The optimized IFS-cubosomal dispersion exhibited maximum IFS content (89.75±4.3%) and better zeta potential value (-40.0±1.6 mV), and size in nanometer. Moreover, IFS-cubosomes retarded IFS release (about 91 %) after 12 h than plain IFS solution (>99 % within 2 h). The IFS-cubosomes displayed lower haemolysis (3.7±0.79%) towards human RBCs. Besides, the in vitro cytotoxicity of IFS-cubosomes was noticed to be substantially higher (IC50: 0.64±0.08 µM) than plain IFS solution (IC50: 1.46±0.21 µM) against multi-drug resistant (MDR) breast cancer (MDA-MB-231) cells. DAPI staining revealed death of IFS-cubosomes treated cells mainly by apoptosis. The cubosomes showed increased uptake by cancer cells. Furthermore, IFS-cubosomes were found to be more stable at refrigeration temperature than at room temperature. \nConclusion: Thus, IFS-cubosomes could be a novel avenue in the treatment of breast cancer with improved anticancer efficacy and reduced toxicity. However, further in vivo investigations are desired to validate these claims.","PeriodicalId":36004,"journal":{"name":"Fabad Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fabad Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55262/fabadeczacilik.1145208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Ifosfamide (IFS) is proved efficacious against breast cancer, an enormously diagnosed cancer across the globe. However, the clinical efficacy of IFS is limited owing to its hydrophilicity, less stability, and dose-dependent toxicities. Therefore, the primary goal of the present research was to develop IFS-loaded cubosomes with improved anticancer efficacy and reduced dose-dependent toxicities.
Methods: The IFS-cubosomes were optimized using a 32 factorial design based on IFS content and zeta potential. The optimized cubosomal dispersion was further assessed for particle size, in vitro IFS release, haemolysis, cytotoxicity, cellular uptake and physical stability.
Results: The optimized IFS-cubosomal dispersion exhibited maximum IFS content (89.75±4.3%) and better zeta potential value (-40.0±1.6 mV), and size in nanometer. Moreover, IFS-cubosomes retarded IFS release (about 91 %) after 12 h than plain IFS solution (>99 % within 2 h). The IFS-cubosomes displayed lower haemolysis (3.7±0.79%) towards human RBCs. Besides, the in vitro cytotoxicity of IFS-cubosomes was noticed to be substantially higher (IC50: 0.64±0.08 µM) than plain IFS solution (IC50: 1.46±0.21 µM) against multi-drug resistant (MDR) breast cancer (MDA-MB-231) cells. DAPI staining revealed death of IFS-cubosomes treated cells mainly by apoptosis. The cubosomes showed increased uptake by cancer cells. Furthermore, IFS-cubosomes were found to be more stable at refrigeration temperature than at room temperature.
Conclusion: Thus, IFS-cubosomes could be a novel avenue in the treatment of breast cancer with improved anticancer efficacy and reduced toxicity. However, further in vivo investigations are desired to validate these claims.
期刊介绍:
The FABAD Journal of Pharmaceutical Sciences is published triannually by the Society of Pharmaceutical Sciences of Ankara (FABAD). All expressions of opinion and statements of supposed facts appearing in articles and/or advertisiments carried in this journal are published on the responsibility of the author and/or advertiser, anda re not to be regarded those of the Society of Pharmaceutical Sciences of Ankara. The manuscript submitted to the Journal has the requirement of not being published previously and has not been submitted elsewhere. Manuscripts should be prepared in accordance with the requirements specified as given in detail in the section of “Information for Authors”. The submission of the manuscript to the Journal is not a condition for acceptance; articles are accepted or rejected on merit alone. All rights reserved.