Protection of sensitive trajectory datasets through spatial and temporal exchange

Elham Naghizade, L. Kulik, E. Tanin
{"title":"Protection of sensitive trajectory datasets through spatial and temporal exchange","authors":"Elham Naghizade, L. Kulik, E. Tanin","doi":"10.1145/2618243.2618278","DOIUrl":null,"url":null,"abstract":"Privacy concerns place a great impediment to publishing and/or exchanging trajectory data across companies and institutions. This has urged researchers to address privacy issues prior to trajectory data release. Currently, privacy preserving solutions distort original data unnecessarily, hence, degrade data utility and make such data less useful for third parties. We consider a trajectory as a sequence of stops and moves, and propose an approach that exploits features of a trajectory as means for preserving privacy while maintaining a high level of utility. We introduce the concept of sensitivity for stops based on the assumption that they are more vulnerable to privacy threats. We propose an efficient algorithm that either substitutes sensitive stop points of a trajectory with moves from the same trajectory or introduces a minimal detour if a less sensitive stop can not be found on the same route. Our experiments shows that our method balances user privacy and data utility: it protects privacy through preventing an adversary from making inferences about sensitive stops while maintaining a high level of data similarity to the original dataset.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"43 1","pages":"40:1-40:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Privacy concerns place a great impediment to publishing and/or exchanging trajectory data across companies and institutions. This has urged researchers to address privacy issues prior to trajectory data release. Currently, privacy preserving solutions distort original data unnecessarily, hence, degrade data utility and make such data less useful for third parties. We consider a trajectory as a sequence of stops and moves, and propose an approach that exploits features of a trajectory as means for preserving privacy while maintaining a high level of utility. We introduce the concept of sensitivity for stops based on the assumption that they are more vulnerable to privacy threats. We propose an efficient algorithm that either substitutes sensitive stop points of a trajectory with moves from the same trajectory or introduces a minimal detour if a less sensitive stop can not be found on the same route. Our experiments shows that our method balances user privacy and data utility: it protects privacy through preventing an adversary from making inferences about sensitive stops while maintaining a high level of data similarity to the original dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时空交换保护敏感轨迹数据集
隐私问题对公司和机构之间发布和/或交换轨迹数据造成了很大的障碍。这促使研究人员在轨迹数据发布之前解决隐私问题。目前,隐私保护解决方案不必要地扭曲了原始数据,从而降低了数据的效用,使这些数据对第三方的有用性降低。我们将轨迹视为一系列的停止和移动,并提出了一种利用轨迹特征作为保护隐私同时保持高水平效用的方法。基于站点更容易受到隐私威胁的假设,我们引入了站点敏感性的概念。我们提出了一种有效的算法,该算法要么用来自同一轨迹的移动替代轨迹上的敏感停靠点,要么在同一路线上找不到不那么敏感的停靠点时引入最小绕行。我们的实验表明,我们的方法平衡了用户隐私和数据效用:它通过防止对手对敏感停止进行推断来保护隐私,同时保持与原始数据集的高水平数据相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1