De-rendering Stylized Texts

Wataru Shimoda, Daichi Haraguchi, S. Uchida, Kota Yamaguchi
{"title":"De-rendering Stylized Texts","authors":"Wataru Shimoda, Daichi Haraguchi, S. Uchida, Kota Yamaguchi","doi":"10.1109/ICCV48922.2021.00111","DOIUrl":null,"url":null,"abstract":"Editing raster text is a promising but challenging task. We propose to apply text vectorization for the task of raster text editing in display media, such as posters, web pages, or advertisements. In our approach, instead of applying image transformation or generation in the raster domain, we learn a text vectorization model to parse all the rendering parameters including text, location, size, font, style, effects, and hidden background, then utilize those parameters for reconstruction and any editing task. Our text vectorization takes advantage of differentiable text rendering to accurately reproduce the input raster text in a resolution-free parametric format. We show in the experiments that our approach can successfully parse text, styling, and background information in the unified model, and produces artifact-free text editing compared to a raster baseline.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"1056-1065"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Editing raster text is a promising but challenging task. We propose to apply text vectorization for the task of raster text editing in display media, such as posters, web pages, or advertisements. In our approach, instead of applying image transformation or generation in the raster domain, we learn a text vectorization model to parse all the rendering parameters including text, location, size, font, style, effects, and hidden background, then utilize those parameters for reconstruction and any editing task. Our text vectorization takes advantage of differentiable text rendering to accurately reproduce the input raster text in a resolution-free parametric format. We show in the experiments that our approach can successfully parse text, styling, and background information in the unified model, and produces artifact-free text editing compared to a raster baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去渲染风格化文本
编辑栅格文本是一项有前途但具有挑战性的任务。我们建议将文本矢量化应用于显示媒体(如海报、网页或广告)中的光栅文本编辑任务。在我们的方法中,我们不是在栅格域中应用图像转换或生成,而是学习文本矢量化模型来解析所有渲染参数,包括文本,位置,大小,字体,样式,效果和隐藏背景,然后利用这些参数进行重建和任何编辑任务。我们的文本矢量化利用可微分文本渲染的优势,以无分辨率的参数格式精确地再现输入光栅文本。我们在实验中表明,我们的方法可以成功地解析统一模型中的文本、样式和背景信息,并且与栅格基线相比,产生无人工的文本编辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1