29 Noncanonical Functions of Aminoacyl-tRNA Synthetases in Translational Control

P. Fox, P. S. Ray, A. Arif, J. Jia
{"title":"29 Noncanonical Functions of Aminoacyl-tRNA Synthetases in Translational Control","authors":"P. Fox, P. S. Ray, A. Arif, J. Jia","doi":"10.1101/087969767.48.829","DOIUrl":null,"url":null,"abstract":"Aminoacyl-tRNA synthetases (AARSs) are ancient enzymes, ubiquitous in the three domains of life, that catalyze the ligation of amino acids to cognate tRNAs (Ibba and Soll 2000; Ribas de Pouplana and Schimmel 2001). They are uniquely responsible for deciphering the genetic code, reading the genetic information in the tRNA anticodon, and ligating the appropriate amino acid to the terminal ribose of the conserved CCA sequence at the 3′ end of the tRNA. In most prokaryotes, there are 20 AARSs, one for each major amino acid. Lower eukaryotes have separate cytoplasmic and nuclear-encoded mitochondrial (as well as chloroplastic) AARSs (Sissler et al. 2005). In all vertebrates, and in some invertebrates, the 20 cytoplasmic AARS activities are contained in 19 proteins; the bifunctional GluProRS expresses two enzyme activities in a single polypeptide chain. All synthetases contain catalytic and tRNA anticodon recognition sites in separate domains, and belong to one of two structurally distinct classes (Ibba and Soll 2000). The 10 Class I enzymes have a Rossman fold in the active site, bind the minor groove of the tRNA acceptor stem, and aminoacylate ribose at the 2′-OH position. In contrast, the 10 Class II enzymes have an antiparallel β-sheet in the active site, bind the major groove of the acceptor stem, and aminoacylate ribose at 3′-OH. Class I and II enzymes can be further grouped into subclasses that exhibit additional structural similarities and that recognize related amino acid substrates. In vertebrate cells, 9 AARS activities in 8 enzymes (including the bifunctional GluProRS, also...","PeriodicalId":10493,"journal":{"name":"Cold Spring Harbor Monograph Archive","volume":"79 1","pages":"829-854"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Monograph Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/087969767.48.829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Aminoacyl-tRNA synthetases (AARSs) are ancient enzymes, ubiquitous in the three domains of life, that catalyze the ligation of amino acids to cognate tRNAs (Ibba and Soll 2000; Ribas de Pouplana and Schimmel 2001). They are uniquely responsible for deciphering the genetic code, reading the genetic information in the tRNA anticodon, and ligating the appropriate amino acid to the terminal ribose of the conserved CCA sequence at the 3′ end of the tRNA. In most prokaryotes, there are 20 AARSs, one for each major amino acid. Lower eukaryotes have separate cytoplasmic and nuclear-encoded mitochondrial (as well as chloroplastic) AARSs (Sissler et al. 2005). In all vertebrates, and in some invertebrates, the 20 cytoplasmic AARS activities are contained in 19 proteins; the bifunctional GluProRS expresses two enzyme activities in a single polypeptide chain. All synthetases contain catalytic and tRNA anticodon recognition sites in separate domains, and belong to one of two structurally distinct classes (Ibba and Soll 2000). The 10 Class I enzymes have a Rossman fold in the active site, bind the minor groove of the tRNA acceptor stem, and aminoacylate ribose at the 2′-OH position. In contrast, the 10 Class II enzymes have an antiparallel β-sheet in the active site, bind the major groove of the acceptor stem, and aminoacylate ribose at 3′-OH. Class I and II enzymes can be further grouped into subclasses that exhibit additional structural similarities and that recognize related amino acid substrates. In vertebrate cells, 9 AARS activities in 8 enzymes (including the bifunctional GluProRS, also...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氨基酰基- trna合成酶在翻译控制中的非规范功能
氨基酰基trna合成酶(AARSs)是一种古老的酶,普遍存在于生命的三个领域,催化氨基酸连接到同源trna (Ibba and Soll 2000;Ribas de Pouplana and Schimmel 2001)。它们负责破译遗传密码,读取tRNA反密码子中的遗传信息,并将适当的氨基酸连接到tRNA 3 '端的保守CCA序列的末端核糖上。在大多数原核生物中,有20个aars,每个主要氨基酸对应一个aars。低级真核生物有独立的细胞质和核编码线粒体(以及叶绿体)aars (Sissler et al. 2005)。在所有脊椎动物和一些无脊椎动物中,20种细胞质AARS活性包含在19种蛋白质中;双功能的gluproors在一个多肽链中表达两种酶的活性。所有合成酶都在不同的结构域含有催化和tRNA反密码子识别位点,属于两种结构不同的类别之一(Ibba和Soll 2000)。10种I类酶在活性位点具有Rossman折叠,结合tRNA受体茎的小槽,并在2 ' -OH位置氨基酰化核糖。相比之下,10种II类酶在活性位点具有反平行的β-片,结合受体茎的主要凹槽,并在3 ' -OH上氨基酰化核糖。I类和II类酶可以进一步分为具有额外结构相似性和识别相关氨基酸底物的亚类。在脊椎动物细胞中,9种AARS在8种酶中具有活性(包括双功能的GluProRS,也…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adult Neurogenesis in Teleost Fish 3 Processing of Yeast Cytoplasmic and Mitochondrial Precusor tRNAs 1 Evolutionary Origin of Bone and Cartilage in Vertebrates 3 Patterning and Differentiation of the Vertebrate Spine Preface/Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1