Distributed Model Predictive Intersection Control of Multiple Vehicles

M. Kloock, Patrick Scheffe, S. Marquardt, Janis Maczijewski, Bassam Alrifaee, S. Kowalewski
{"title":"Distributed Model Predictive Intersection Control of Multiple Vehicles","authors":"M. Kloock, Patrick Scheffe, S. Marquardt, Janis Maczijewski, Bassam Alrifaee, S. Kowalewski","doi":"10.1109/ITSC.2019.8917117","DOIUrl":null,"url":null,"abstract":"This paper investigates intersection control of multiple vehicles using a Model Predictive Control (MPC) framework. Vehicles follow pre-defined paths across the intersection and adjust their velocities to ensure collision-free passage while maximizing an objective. We choose a non-cooperative Distributed Model Predictive Control (DMPC) approach, where priorities need to be assigned to vehicles. The algorithm we present sets these priorities automatically by evaluating the vehicles’ time to react to stop before entering the intersection. We demonstrate our method in simulations of multiple vehicles and continuous traffic. It produces near-optimal velocity profiles and reduces the computation time in comparison to centralized MPC while avoiding vehicle collisions and deadlocks.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"7 1","pages":"1735-1740"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper investigates intersection control of multiple vehicles using a Model Predictive Control (MPC) framework. Vehicles follow pre-defined paths across the intersection and adjust their velocities to ensure collision-free passage while maximizing an objective. We choose a non-cooperative Distributed Model Predictive Control (DMPC) approach, where priorities need to be assigned to vehicles. The algorithm we present sets these priorities automatically by evaluating the vehicles’ time to react to stop before entering the intersection. We demonstrate our method in simulations of multiple vehicles and continuous traffic. It produces near-optimal velocity profiles and reduces the computation time in comparison to centralized MPC while avoiding vehicle collisions and deadlocks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多车辆分布式模型预测交叉口控制
本文利用模型预测控制(MPC)框架研究了多车辆的交叉口控制问题。车辆沿着预先定义的路径穿过十字路口,并调整速度以确保无碰撞通过,同时最大化目标。我们选择了一种非合作的分布式模型预测控制(DMPC)方法,其中需要为车辆分配优先级。我们提出的算法通过评估车辆在进入十字路口之前做出反应的时间来自动设置这些优先级。我们在多车连续交通的仿真中验证了我们的方法。与集中式MPC相比,它产生了接近最佳的速度曲线,减少了计算时间,同时避免了车辆碰撞和死锁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1