A. Kafle, K. Garcia, V. Peta, Jaya K. Yakha, A. Soupir, H. Bücking
{"title":"Beneficial Plant Microbe Interactions and Their Effect on Nutrient Uptake, Yield, and Stress Resistance of Soybeans","authors":"A. Kafle, K. Garcia, V. Peta, Jaya K. Yakha, A. Soupir, H. Bücking","doi":"10.5772/INTECHOPEN.81396","DOIUrl":null,"url":null,"abstract":"Plants are meta-organisms that are associated with complex microbiomes. Many of the microorganisms that reside on plant surfaces (epiphytes) or within plant tissues (endophytes) do not cause any plant diseases but often contribute significantly to the nutrient supply of their host plant and can help the plant to overcome a variety of biotic or abiotic stresses. The yield potential of any plant depends not only on successful plant traits that improve, for example, the adaptation to low input conditions or other stressful environments but also on the plant microbiome and its potential to promote plant growth under these conditions. There is a growing interest to unravel the mechanisms underlying these beneficial plant microbe interactions because the activities of these microbial communities are of critical importance for plant growth under abiotic and biotic stresses and could lead to the development of novel strategies to improve yields and stress resistances of agronomically important crops. In this chapter, we summarize our current understanding of the beneficial interactions of soybean plants with arbuscular mycorrhizal fungi, nitrogen-fixing rhizobia, and fungal and bacterial endophytes and identify major knowledge gaps that need to be filled to use beneficial microbes to their full potential.","PeriodicalId":22179,"journal":{"name":"Soybean - Biomass, Yield and Productivity","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soybean - Biomass, Yield and Productivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Plants are meta-organisms that are associated with complex microbiomes. Many of the microorganisms that reside on plant surfaces (epiphytes) or within plant tissues (endophytes) do not cause any plant diseases but often contribute significantly to the nutrient supply of their host plant and can help the plant to overcome a variety of biotic or abiotic stresses. The yield potential of any plant depends not only on successful plant traits that improve, for example, the adaptation to low input conditions or other stressful environments but also on the plant microbiome and its potential to promote plant growth under these conditions. There is a growing interest to unravel the mechanisms underlying these beneficial plant microbe interactions because the activities of these microbial communities are of critical importance for plant growth under abiotic and biotic stresses and could lead to the development of novel strategies to improve yields and stress resistances of agronomically important crops. In this chapter, we summarize our current understanding of the beneficial interactions of soybean plants with arbuscular mycorrhizal fungi, nitrogen-fixing rhizobia, and fungal and bacterial endophytes and identify major knowledge gaps that need to be filled to use beneficial microbes to their full potential.